Skip to main content

Advertisement

Log in

Development of three dimensional constitutive theories based on lower dimensional experimental data

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Most three dimensional constitutive relations that have been developed to describe the behavior of bodies are correlated against one dimensional and two dimensional experiments. What is usually lost sight of is the fact that infinity of such three dimensional models may be able to explain these experiments that are lower dimensional. Recently, the notion of maximization of the rate of entropy production has been used to obtain constitutive relations based on the choice of the stored energy and rate of entropy production, etc. In this paper we show different choices for the manner in which the body stores energy and dissipates energy and satisfies the requirement of maximization of the rate of entropy production that can all describe the same experimental data. All of these three dimensional models, in one dimension, reduce to the model proposed by Burgers to describe the viscoelastic behavior of bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Burgers: Mechanical considerations-model systems-phenomenological theories of relaxation and of viscosity. First Report on Viscosity and Plasticity. Nordemann Publishing Company, New York, 1935.

    Google Scholar 

  2. A. E. Green, P. M. Naghdi: On thermodynamics and the nature of the second law. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 357 (1977), 253–270.

    Article  MathSciNet  Google Scholar 

  3. M. Itskov: On the theory of fourth-order tensors and their applications in computational mechanics. Comput. Methods Appl. Mech. Eng. 189 (2000), 419–438.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Málek, K. R. Rajagopal: A thermodynamic framework for a mixture of two liquids. Nonlinear Anal.-Real World Appl. 9 (2008), 1649–1660.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. C. Maxwell: On the dynamical theory of gases. Philos. Trans. Roy. Soc. London 157 (1867), 49–88.

    Article  Google Scholar 

  6. J. Murali Krishnan, K. R. Rajagopal: Thermodynamic framework for the constitutive modeling of asphalt concrete: Theory and applications. J. Mater. Civ. Eng. 16 (2004), 155–166.

    Article  Google Scholar 

  7. J. G. Oldroyd: On the formulation of rheological equation of state. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 200 (1950), 523–591.

    Article  MathSciNet  Google Scholar 

  8. K. R. Rajagopal: Multiple configurations in continuum mechanics. Report Vol. 6. Institute for Computational and Applied Mechanics, University of Pittsburgh, Pittsburgh, 1995.

    Google Scholar 

  9. K. R. Rajagopal: On implicit constitutive theories. Appl. Math. 48 (2003), 279–319.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. R. Rajagopal, A. R. Srinivasa: Mechanics of the inelastic behavior of materials. Part II: Inelastic response. Int. J. Plast. 14 (1998), 969–995.

    Article  MATH  Google Scholar 

  11. K. R. Rajagopal, A. R. Srinivasa: A thermodynamic framework for rate type fluid models. J. Non-Newtonian Fluid Mech. 88 (2000), 207–227.

    Article  MATH  Google Scholar 

  12. K. R. Rajagopal, A. R. Srinivasa: On the thermomechanics of materials that have multiple natural configurations. Part I: Viscoelasticity and classical plasticity. Z. Angew. Math. Phys. 55 (2004), 861–893.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. R. Rajagopal, A. R. Srinivasa: On the thermomechanics of materials that have multiple natural configurations. Part II: Twinning and solid to solid phase transformation. Z. Angew. Math. Phys. 55 (2004), 1074–1093.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. R. Rajagopal, A. R. Srinivasa: On thermomechanical restrictions of continua. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460 (2004), 631–651.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. R. Rajagopal, A. R. Srinivasa: On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 59 (2008), 715–729.

    Article  MATH  MathSciNet  Google Scholar 

  16. I. J. Rao, K. R. Rajagopal: On a new interpretation of the classical Maxwell model. Mech. Res. Comm. 34 (2007), 509–514.

    Article  MathSciNet  Google Scholar 

  17. H. Ziegler: Some extremum principles in irreversible thermodynamics. In: Progress in Solid Mechanics, Vol. 4 (I. N. Sneddon, R. Hill, eds.). North Holland, New York, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karra, S., Rajagopal, K.R. Development of three dimensional constitutive theories based on lower dimensional experimental data. Appl Math 54, 147–176 (2009). https://doi.org/10.1007/s10492-009-0010-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-009-0010-z

Keywords

MSC 2000

Navigation