Skip to main content
Log in

Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Generalist predators have the potential advantage to control more than one pest and to be more persistent than specialist predators because they can survive on different foods. Moreover, their population growth rate may be elevated when offered a mixture of prey species. We studied a generalist predatory mite Balaustium sp. that shows promise for biological control of thrips and whiteflies in protected rose cultures in Colombia. Although starting its life in the soil, this predator makes excursions onto plants where it feeds on various arthropods. We quantified life history parameters of the predator, offering high densities of three pest species: first-instar larvae of Frankliniella occidentalis, eggs of Trialeurodes vaporariorum and Tetranychus urticae, either alone or in combination. The predators completed their life cycle on each diet. The egg-to-egg period was c. 2 months. All eggs were laid in one batch in 1–2 days, indicating a pronounced semelparous reproduction pattern. In general, females reproduced earlier and laid more eggs on mixed diets, and these early reproducers consequently had higher population growth rates than late reproducers. The best diet in terms of egg-to-egg period and juvenile survival was the combination of eggs from whiteflies and spider mites. Spider mite eggs alone and western flower thrips larvae alone were the worst diets. It remains to be investigated whether mixed diets promote the population growth rate of Balaustium sufficiently for biocontrol of whiteflies and thrips in the presence of alternative prey, such as spider mites, to become effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bakker FM, Sabelis MW (1989) How larvae of Thrips tabaci reduce the attack success of phytoseiid predators. Entomol Exp Appl 50:47–51

    Article  Google Scholar 

  • Blommers LHM, van Arendonk RCM (1979) The profit of senescence in phytoseiid mites. Oecologia 44:87–90

    Article  Google Scholar 

  • Bruce WA, Wrensch DL (1990) Reproductive potential, sex ratio, and mating efficiency of the straw itch mite (Acari: Pyemotidae). J Econ Entomol 83:384–391

    Google Scholar 

  • Cadogan B, Laing J (1977) A technique for rearing the predaceous mite Balaustium putmani (Acarina: Erythraeidae), with notes on its biology and life history. Can Entomol 109:1535–1544

    Article  Google Scholar 

  • Carey JR (1993) Applied demography for biologists, with special emphasis on insects. Oxford University Press, New York, USA

  • Caswell H (1982) Life history theory and the equilibrium status of populations. Am Nat 120:317–339

    Article  Google Scholar 

  • Chang GC, Kareiva P (1999) The case for indigenous generalists in biological control. In: Hawkins BA, Cornell HV (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, pp 103–115

    Chapter  Google Scholar 

  • Charnov EL, Schaffer WM (1973) Life-history consequences of natural selection: Cole’s result revisited. Am Nat 107:791–793

    Article  Google Scholar 

  • Childers CC, Rock GC (1981) Observations on the occurrence and feeding habits of Balaustium pulmani (Acari: Erythraeidae) in North Carolina apple orchards. Int J Acarol 7:63–68

    Article  Google Scholar 

  • Chiverton PA (1986) Predator density manipulation and its effects on populations of Rhopalosiphum padi (Hom, Aphididae) in spring barley. Ann Appl Biol 109:49–60

    Article  Google Scholar 

  • Cole LC (1954) The population consequences of life history phenomena. Q Rev Biol 29:103–137

    Article  PubMed  CAS  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Diamond JM (1982) Big-bang reproduction and ageing in male marsupial mice. Nature 298:115–116

    Article  PubMed  CAS  Google Scholar 

  • Faraji F, Janssen A, Sabelis MW (2002a) The benefits of clustering eggs: the role of egg predation and larval cannibalism in a predatory mite. Oecologia 131:20–26

    Article  Google Scholar 

  • Faraji F, Janssen A, Sabelis MW (2002b) Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecol Entomol 27:660–664

    Article  Google Scholar 

  • Getiva J, Acosta A (2004) Taxonomía de ácaros asociados a cultivos de flores. Asocolflores 66:59–68

    Google Scholar 

  • Halliday R (2005) Predatory mites from crops and pastures in South Africa: potential natural enemies of redlegged earth mite Halotydeus destructor (Acari: Penthaleidae). Zootaxa 1079:11–64

    Google Scholar 

  • Harwood JD, Phillips SW, Lello J, Sunderland KD, Glen DM, Bruford MW, Harper GL, Symondson WOC (2009) Invertebrate biodiversity affects predator fitness and hence potential to control pests in crops. Biol Contr 51:499–506

    Article  Google Scholar 

  • Hassell MP, May RM (1986) Generalist and specialist natural enemies in insect predator-prey interactions. J Anim Ecol 55:923–940

    Article  Google Scholar 

  • Hautekeete NC, Piquot Y, Van Dijk H (2001) Investment in survival and reproduction along a semelparity-iteroparity gradient in the Beta species complex. J Evol Biol 14:795–804

    Article  Google Scholar 

  • Hayes JL (1985) The predator-prey interaction of the mite Balaustium sp. and the pierid butterfly Colias alexandra. Ecology 66:300–303

    Article  Google Scholar 

  • Hedges BZ, Rosselot AE, Tomko PM, Yoder JA, Benoit JB (2012) High temperature and dehydration tolerance of the red velvet mite, Balaustium sp. (Erythraeidae), permit the exploitation of extremely hot, dry microhabitats. Int J Acarol 38:89–95

    Article  Google Scholar 

  • Hosmer DWJ, Lemeshow S (1999) Applied survival analysis. Regression modeling of time to event data. Wiley-Interscience Publication, New York

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363

    Article  Google Scholar 

  • Janssen A, Faraji F, van der Hammen T, Magalhães S, Sabelis MW (2002) Interspecific infanticide deters predators. Ecol Lett 5:490–494

    Article  Google Scholar 

  • Janssen A, Montserrat M, HilleRisLambers R, de Roos AM, Pallini A, Sabelis MW (2006) Intraguild predation usually does not disrupt biological control. In: Brodeur J, Boivin G (eds) Trophic and guild interactions in biological control, vol 3. Springer, Dordrecht, pp 21–44

    Chapter  Google Scholar 

  • Kaliszewski M, Athias-Binche F, Lindquist EE (1995) Parasitism and parasitoidism in Tarsonemina (Acari: Heterostigmata) and evolutionary considerations. Adv Parasitol 35:335–367

    Article  PubMed  CAS  Google Scholar 

  • Magalhães S, Janssen A, Montserrat M, Sabelis MW (2005) Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proc R Soc B 272:1929–1933

    Article  PubMed  Google Scholar 

  • Makol J, Arijs Y, Wäckers FL (2012) A new species of Balaustium von Heyden, 1826 (Acari: Actinotrichida, Erythraeidae) from Spain. Zootaxa 3178:1–21

    Google Scholar 

  • Messelink GJ, van Maanen R, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Contr 44:372–379

    Article  Google Scholar 

  • Messelink G, van Maanen R, van Holstein-Saj R, Sabelis MW, Janssen A (2010) Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. Biocontrol 55:387–398

    Article  Google Scholar 

  • Messelink GJ, Bloemhard CMJ, Cortes JA, Sabelis MW, Janssen A (2011) Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biol Contr 57:246–252

    Article  Google Scholar 

  • Messelink GJ, Sabelis MW, Janssen A (2012) Generalist predators, food web complexities and biological pest control in greenhouse crops. In: Larramendy ML, Soloneski S (eds) Integrated pest management and pest control—current and future tactics. InTech, Rijeka, Croatia, pp 191–214

  • Montserrat M, Bas C, Magalhaes S, Sabelis MW, de Roos AM, Janssen A (2007) Predators induce egg retention in prey. Oecologia 150:699–705

    Article  PubMed  Google Scholar 

  • Muñoz K, Fuentes L, Cantor F, Rodríguez D, Cure JR (2009) Feeding preferences of the mite Balaustium sp. under controlled conditions. Agronomía Colombiana 27:95–103

    Google Scholar 

  • Murdoch WW (1994) Population regulation in theory and practice. Ecology 75:271–287

    Article  Google Scholar 

  • Murdoch WW, Scott MA, Ebsworth P (1984) Effects of the general predator, Notonecta (Hemiptera) upon a fresh-water community. J Anim Ecol 53:791–808

    Article  Google Scholar 

  • Murdoch WW, Chesson J, Chesson PL (1985) Biological control in theory and practice. Am Nat 125:344–366

    Article  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291

    Article  PubMed  CAS  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68

    Article  PubMed  Google Scholar 

  • Oelbermann K, Scheu S (2002) Effects of prey type and mixed dites on survival, growth and development of a generalist predator, Pardosa lugubris (Araneae : Lycosidae). Basic Appl Ecol 3:285–291

    Article  Google Scholar 

  • Pozzebon A, Duso C (2008) Grape downy mildew Plasmopara viticola, an alternative food for generalist predatory mites occurring in vineyards. Biol Contr 45:441–449

    Article  Google Scholar 

  • Putman WL (1969) Life history and behavior of Balaustium putmani (Acarina: Erythraeidae). Ann Entomol Soc Am 63:76–81

    Google Scholar 

  • Ranta E, Tesar D, Kaitala V (2002) Environmental variability and semelparity vs. iteroparity as life histories. J Theor Biol 217:391–396

    Article  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New York

    Google Scholar 

  • Rosenheim JA (1998) Higher-order predators and the regulation of insect herbivore populations. Annu Rev Entomol 43:421–447

    Article  PubMed  CAS  Google Scholar 

  • Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449

    Article  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents—theory and evidence. Biol Contr 5:303–335

    Article  Google Scholar 

  • Sabelis MW (1991) Life-history evolution of spider mites. In: Schuster R, Murphy PW (eds) The Acari. Reproduction, development and life-history strategies. Chapman & Hall, London, pp 23–49

    Google Scholar 

  • Sabelis MW, Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) World crop pests, vol 6. Elsevier, Amsterdam, pp 329–366

    Google Scholar 

  • Sabelis MW, Janssen A (1994) Evolution of life history patterns in the Phytoseiidae. In: Houck MA (ed) Mites: ecological and evolutionary analyses of life history patterns. Chapman & Hall, New York, USA, pp 70–98

  • Scheu S (2001) Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl Ecol 2:3–13

    Article  Google Scholar 

  • Settle WH, Ariawan H, Astuti ET, Cahyana W, Hakim AL, Hindayana D, Lestari AS, Pajarningsih and Sartanto (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77:1975–1988

    Google Scholar 

  • Sonenshine DE (1991) Biology of ticks. Oxford University Press, New York

    Google Scholar 

  • Stearns SC (1976) Life-history tactics: a review of the ideas. Q Rev Biol 51:3–47

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Symondson WOC, Sutherland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  PubMed  CAS  Google Scholar 

  • Toft S, Wise DH (1999) Growth, development, and survival of a generalist predator fed single- and mixed-species diets of different quality. Oecologia 119:191–197

    Article  Google Scholar 

  • Torrado E, Pérez M, Cure J, García M, Echeverri C (2001) Evaluación de sistemas de control biológico utilizados comercialmente en Europa para el control de plagas de rosa bajo invernadero, en la Sabana de Bogotá. Asocolflores 61:34–45

    Google Scholar 

  • van Rijn PCJ, van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679

    Article  Google Scholar 

  • Welbourn WC (1983) Potential use of trombidoid and erythraeoid mites as biological control agents of insect pests. In: Hoy MA, Cunningham GL, Knutson L (eds) Biological control of pests and mites. University of California, Berkeley, pp 103–140

    Google Scholar 

  • Welbourn WC, Jennings DT (1991) Two new species of Erythraeidae (Acari, Prostigmata) associated with the spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera, Tortricidae), in Maine. Can Entomol 123:567–580

    Article  Google Scholar 

  • Young TP (1981) A general model of comparative fecundity for semelparous and iteroparous life histories. Am Nat 118:27–36

    Google Scholar 

  • Zeineddine M, Jansen VAA (2009) To age, to die: parity, evolutionary tracking and Cole’s paradox. Evolution 63:1498–1507

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Paul van Rijn for comments and especially for some pertinent suggestions with respect to Fig. 5, and two anonymous reviewers for comments. KM was supported by Colciencias (Colombia) (Programa “Francisco José de Caldas” 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Janssen.

Additional information

The formal redescription of our Balaustium species is currently underway. It is going to be described as Balaustium leanderi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7,759 kb)

Supplementary material 2 (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Cárdenas, K., Fuentes, L.S., Cantor, R.F. et al. Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet. Exp Appl Acarol 62, 19–32 (2014). https://doi.org/10.1007/s10493-013-9727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-013-9727-1

Keywords

Navigation