Skip to main content
Log in

Generalist predator contributions to the control of Tetranychus urticae in strawberry crops documented by PCR-based gut content analysis

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The contribution of generalist insect predators to the control of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), an herbivorous pest of many crops, is poorly understood. One of the common insect predators in strawberries is the generalist predatory bug Anthocoris nemorum L. (Hemiptera: Anthocoridae), which has the potential to contribute to the control of pest populations. The feeding of adult A. nemorum on T. urticae was assessed by sampling individuals from an organic strawberry field in Denmark, and using PCR gut content analysis to detect remains of T. urticae within their gut. In the lab, we assessed that the DNA half-life detectability was 21.5 h. Significant numbers of field-collected A. nemorum tested positive for T. urticae prey DNA, with very high numbers in June (62.8%) and August (38.8%). This study presents conclusive evidence that the generalist predator A. nemorum can contribute to the decrease of T. urticae densities in strawberry fields, although the actual contribution in the present study is probably limited because predator populations were relatively low compared to T. urticae. The abundance of T. urticae did not increase significantly during the period of sampling, suggesting that a complex of natural enemies can achieve biological control of T. urticae in protected strawberries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agustí N, Unruh TR, Welter SC (2003) Detecting Cacopsylla pyricola (Hemiptera: Psyllidae) in predator guts using COI mitochondrial markers. B Entomol Res 93:179–185

    Article  CAS  Google Scholar 

  • Athey KJ, Dreyer J, Kowle KA, Penn HJ, Sitvarin MI, Harwood JD (2016) Spring forward: why early season predation matters in agroecosystems. Food Webs 9:25–31

    Article  Google Scholar 

  • Björkman C, Liman A-S (2005) Foraging behavior influences the outcome of predator–predator interactions. Ecol Entomol 30:164–169

    Article  Google Scholar 

  • Boreau de Roincé CB, Lavigne C, Mandrin J-F, Rollard C, Symondson WOC (2013) Early-season predation on aphids by winter-active spiders in apple orchards revealed by diagnostic PCR. B Entomol Res 103:148–154

    Article  CAS  Google Scholar 

  • Chapman EG, Romero S, Harwood JD (2010) Maximizing collection and minimizing risk: does vacuum sampling increase the likelihood for misinterpretation of food web connections? Mol Ecol Resour 10:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Giles KL, Payton ME, Greenstone MH (2000) Identifying key cereal aphid predators by molecular gut analysis. Mol Ecol 9:1887–1898

    Article  PubMed  CAS  Google Scholar 

  • Danmarks Fauna (1907–2004) Dansk naturhistorisk forening, G.E.C. Gad Forlag, Copenhagen, DK

  • Gagnon A-E, Doyon J, Heimpel GE, Brodeur J (2011) Prey DNA detection success following digestion by intraguild predators: influence of prey and predator species. Mol Ecol Resour 11:1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Polo P, Alomar O, Castañé C, Agustí N (2016) Molecular tracking of arthropod predator–prey interactions in Mediterranean lettuce crops. Food Webs 9:18–24

    Article  Google Scholar 

  • Greenstone MH, Rowley DL, Weber DC, Payton ME, Hawthorne DJ (2007) Feeding mode and prey detectability half-lives in molecular gut-content analysis: an example with two predators of the Colorado potato beetle. B Entomol Res 97:201–209

    Article  CAS  Google Scholar 

  • Greenstone MH, Payton ME, Weber DC, Simmons AM (2014) The detectability half-life in arthropod predator–prey research: what it is, why we need it, how to measure it, and how to use it. Mol Ecol 23:3799–3813

    Article  PubMed  Google Scholar 

  • Gulati R (2014) Eco-friendly management of phytophagous mites. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspective. Elsevier Inc, New York, pp 461–491

    Chapter  Google Scholar 

  • Gurr GM, Wratten SD, Landis DA, You M (2016) Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 62:91–109

    Article  PubMed  CAS  Google Scholar 

  • Harwood JD (2008) Are sweep net sampling and pitfall trapping compatible with molecular analysis of predation? Environ Entomol 37:990–995

    Article  PubMed  Google Scholar 

  • Harwood JD, Sunderland KD, Symondson WOC (2004) Prey selection by linyphiid spiders: molecular tracking of the effects of alternative prey on rates of aphid consumption in the field. Mol Ecol 13:3549–3560

    Article  PubMed  Google Scholar 

  • Harwood JD, Desneux N, Yoo HJS, Rowley DL, Greenstone MH, Obrycki JJ, O’Neil RJ (2007) Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach. Mol Ecol 16:4390–4400

    Article  PubMed  CAS  Google Scholar 

  • Hoy MA (1994) Insect molecular genetics: an introduction to principles and applications. Academic Press, San Diego

    Book  Google Scholar 

  • Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Kärenlampi SO, Karjalainen RO (2007) Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agr Food Chem 55:1862–1870

    Article  CAS  Google Scholar 

  • Jacobsen SK, Moraes GJ, Sørensen H, Sigsgaard L (2018) Organic cropping practice decreases pest abundance and positively influences predator–prey interactions. Agr Ecosyst Environ (accepted with moderate revisions)

  • Kadir S, Carey E, Ennahli S (2006) Influence of high tunnel and field conditions on strawberry growth and development. HortScience 41:329–335

    Article  Google Scholar 

  • King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963

    Article  PubMed  CAS  Google Scholar 

  • Krey KL, Blubaugh CK, Chapman EG, Lynch CA, Snyder GB, Jensen AS, Fu Z, Prischmann-Voldseth DA, Harwood JD, Snyder WE (2017) Generalist predators consume spider mites despite the presence of alternative prey. Biol Control 115:157–164

    Article  Google Scholar 

  • Macfadyen S, Davies AP, Zalucki MP (2015) Assessing the impact of arthropod natural enemies on crop pests at the field scale. Insect Sci 22:20–34

    Article  PubMed  Google Scholar 

  • Meyling NV, Enkegaard A, Brødsgaard H (2003) Two Anthocoris bugs as predators of glasshouse aphids—voracity and prey preference. Entomol Exp Appl 108:59–70

    Article  Google Scholar 

  • Næss ETL (2016) Molecular analysis of predation by Anthocorid bugs on the pear psyllid Cacopsylla pyri (Homoptera, Psyllidae). Master’s thesis, Norwegian university of life sciences

  • Oelbermann K, Scheu S (2009) Control of aphids on wheat by generalist predators: effects of predator density and the presence of alternative prey. Entomol Exp Appl 132:225–231

    Article  Google Scholar 

  • Pérez-Sayas C, Pina T, Gómez-Martínez MA, Camañes G, Ibáñez-Gual MV, Jaques JA, Hurtado MA (2015) Disentangling mite predator–prey relationships by multiplex PCR. Mol Ecol Resour 15:1330–1345

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2016) The R foundation for statistical computing. http://www.R-project.org

  • Saulich AK, Musolin DL (2009) Seasonal development and ecology of anthocorids (Heteroptera, Anthocoridae). Entomol Rev 89:501–528

    Article  Google Scholar 

  • Schmidt JM, Barney SK, Williams MA, Bessin RT, Coolong TW, Harwood JD (2014) Predator–prey trophic relationships in response to organic management practices. Mol Ecol 23:3777–3789

    Article  PubMed  Google Scholar 

  • Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator–prey food webs. Funct Ecol 19:751–762

    Article  Google Scholar 

  • Sheppard SK, Bell J, Sunderland D, Fenlon J, Skervin D, Symondson WOC (2005) Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Mol Ecol 14:4461–4468

    Article  PubMed  CAS  Google Scholar 

  • Sigsgaard L (2010) Habitat and prey preference of the two predatory bugs Anthocoris nemorum (L.) and A. nemoralis (Fabricius) (Anthocoridae: Hemiptera-Heteroptera). Biol Control 53:46–54

    Article  Google Scholar 

  • Simonsen MLR, Enkegaard A, Bang CN, Sigsgaard L (2010) Anthocoris nemorum (Heteroptera: Anthocoridae) as predator of cabbage pests—voracity and prey preference. Entomol Fennica 21:12–18

    Article  Google Scholar 

  • Sint D, Raso L, Kaufmann R, Traugott M (2011) Optimizing methods for PCR-based analysis of predation. Mol Ecol Resour 11:795–801

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skerninge, DK

  • Skipper L (2013) Danmarks blomstertæger. Danmarks Dyreliv vol, 12. Apollo Booksellers, Vester

    Google Scholar 

  • Sobhy IS, Sarhan AA, Shoukry AA, El-Kady GA, Mandour NS, Reitz SR (2010) Development, consumption rates and reproductive biology of Orius albidipennis reared on various prey. Biocontrol 55:753–765

    Article  Google Scholar 

  • Solomon MG, Cross JV, Fitzgerald JD, Campbell CAM, Jolly RL, Olszak RW, Niemczyk E, Vogt H (2000) Biocontrol of pests of apples and pears in northern and central Europe—3. Predators. Biocontrol Sci Techn 10:91–128

    Article  Google Scholar 

  • Southwood TRE, Leston D (2005) Land and water bugs of the British Isles. Pisces Conservation, Ltd. Hampshire

    Google Scholar 

  • Staudacher K, Jonsson M, Traugott M (2016) Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. J Pest Sci 89:281–293

    Article  Google Scholar 

  • Sunderland K (1999) Mechanisms underlying the effects of spiders on pest populations. J Arachnol 27:308–316

    Google Scholar 

  • Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    Article  PubMed  CAS  Google Scholar 

  • Symondson WOC, Liddell JE (1995) Decay rates for slug antigens within the carabid predator Pterostichus melanarius monitored with a monoclonal antibody. Entomol Exp Appl 75:245–250

    Article  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  PubMed  CAS  Google Scholar 

  • Traugott M, Bell J, Raso L, Sint D, Symondson W (2012) Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation. B Entomol Res 102:239–247

    Article  CAS  Google Scholar 

  • Vrancken K, Trekels H, Thys T, Beliën T, Bylemans D, Demaeght P, Van Leeuwen T, De Clercq P (2015) The presence of beneficial arthropods in organic versus IPM pear orchards and their ability to predate pear suckers. Acta Hort 1094:427–429

    Article  Google Scholar 

  • Wysoki M (1985) Control of Tetranychidae in crops. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1B. Elsevier Science Publishers, Amsterdam, pp 273–396

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Josep A. Jaques (Jaume I University, Castellón, Spain) for collaboration, Helle Sørensen (Data Science Lab, Department of Mathematical Sciences, University of Copenhagen) for statistical support, the grower Søren Larsen for his hospitality, and the anonymous reviewers for their helpful comments to the manuscript. This study is a part of the research project IMBICONT (Improved Biological Control for IPM in Fruits and Berries) (Project number 1024151001) funded by Innovation Fund Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stine Kramer Jacobsen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobsen, S.K., Sigsgaard, L., Hansen, K. et al. Generalist predator contributions to the control of Tetranychus urticae in strawberry crops documented by PCR-based gut content analysis. Exp Appl Acarol 77, 133–143 (2019). https://doi.org/10.1007/s10493-019-00351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-019-00351-x

Keywords

Navigation