Skip to main content
Log in

Large Eddy Simulation of Premixed Turbulent Flames Using the Probability Density Function Approach

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In the present study a Large Eddy Simulation and Filtered Density Function model is applied to three premixed piloted turbulent methane flames at different Reynolds Numbers using the Eulerian stochastic fields approach. The model is able to reproduce the flame structure and flow characteristics with a low number of fields (between 4 and 16 fields). The results show a good agreement with experimental data with the same closures employed in non-premixed combustion without any adjustment for combustion regime. The effect of heat release on the flow field is captured correctly. A wide range of sensitivity studies is carried out, including the number of fields, the chemical mechanism, differential diffusion effects and micro-mixing closures. The present work shows that premixed combustion (at least in the conditions under study) can be modelled using LES-PDF methods.. Finally, the ability of the model to predict flame quenching is studied. The model can accurate capture the conditions at which combustion is not sustainable and large pockets of extinction appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mustata, R., Valiño, L., Jimenez, C., Jones, W.P., Bondi, S.: A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame 145, 88–104 (2006)

    Article  Google Scholar 

  2. Jones, W.P., Navarro-Martinez, S.: Large eddy simulation of auto-ignition with a subgrid probability density function method. Combust. Flame 150(3), 170–187 (2007)

    Article  Google Scholar 

  3. Jones, W.P., Navarro-Martinez, S., Röhl, O.: Large eddy simulation of hydrogen auto-ignition with a probability density function method. Proc. Combust. Inst. 31, 1765–1771 (2007)

    Article  Google Scholar 

  4. Raman, V., Pitsch, H.: A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31(2), 1711–1719 (2007)

    Article  Google Scholar 

  5. Jones, W.P., Prasad, N.: Large eddy simulation of the Sandia flame series (D–F) using the Eulerian stochastic field method. Combust. Flame 157, 1621–1636 (2010)

    Article  Google Scholar 

  6. Peters, N.: Multiscale combustion and turbulence. Proc. Combust. Inst. 32, 1–25 (2009)

    Article  Google Scholar 

  7. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. R. T. Edwards (2005)

  8. Fureby, C., Löfström, C.: Large eddy simulations of bluff body stabilized flames. Proc. Combust. Inst. 25, 1257–1264 (1994)

    Google Scholar 

  9. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)

    Article  Google Scholar 

  10. Im, H.G., Lund, T.S., Ferziger, J.H.: Large eddy simulation of turbulent front propagation with dynamic subgrid models. Phys. Fluids 9(7), 3826–3833 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pitsch, H., de Lageneste, L.D.: Large eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 2001–2008 (2002)

    Article  Google Scholar 

  12. Boger, M., Veynante, D., Boughanem, H., Trouve, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–927 (1998)

    Google Scholar 

  13. Hawkes, E.R., Cant, R.S.: A flame surface density approach to large-eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)

    Article  Google Scholar 

  14. Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Proc. Combust. Inst. 27, 899–907 (1998)

    Google Scholar 

  15. Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31, 3059–3066 (2007)

    Article  Google Scholar 

  16. van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed counterflow flames using the flamelet-generated manifold method. Combust. Theory Model. 6(3), 463–478 (2002)

    Article  Google Scholar 

  17. Knikker, R., Veynante, D., Menevau, C.: A priori testing of a similarity model for large eddy simulations of turbulent premixed combustion. Proc. Combust. Inst. 29, 2105–211 (2002)

    Article  Google Scholar 

  18. Kim, W.-W., Menon, S.: Numerical modeling of turbulent premixed flames in the thin-reaction-zones regimes. Combust. Sci. Technol. 160, 119–150 (2000)

    Article  Google Scholar 

  19. Pitsch, H.: Large eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  20. Chakravarthy, V.K., Menon, S.: Large eddy simulation of turbulent premixed flames in the flamelet regime. Combust. Sci. Technol. 162, 175–190 (2001)

    Article  Google Scholar 

  21. Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Hybrid presumed pdf and flame surface density approaches for large-eddy simulation of premixed turbulent combustion. Combust. Flame 158, 1201–1214 (2011)

    Article  Google Scholar 

  22. Hernández-Pérez, F.E., Yuen, F.T.C., Groth, C.P.T., Gülder, Ö.L.: LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models. Proc. Combust. Inst. 33, 1365–1371 (2011)

    Article  Google Scholar 

  23. Kuenne, G., Ketelhuen, A., Janicka, J.: LES modelling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158, 1750–1767 (2011)

    Article  Google Scholar 

  24. Stöllinger, M., Heinz, S.: PDF modelling and simulation of premixed turbulent combustion. Monte Carlo Methods Appl. 14(4), 343–377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lindstedt, R.P., Vaos, E.M.: Transported PDF modelling of high-reynolds-numbre premixed turbulent flames. Combust. Flame 145, 495–511 (2006)

    Article  Google Scholar 

  26. Lindstedt, R.P., Milosavljevic, V.D., Persson, M.: Turbulent burning velocity predictions using transported PDF methods. Proc. Combust. Inst. 33, 1277–1284 (2010)

    Article  Google Scholar 

  27. Rowinski, D.H., Pope, S.B.: PDF calculations of piloted premixed jet flames. Combust. Theory Model 15(2), 245–266 (2011)

    Article  MATH  Google Scholar 

  28. Stöllinger, M.K., Stefan, H.: Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame. Combust. Flame 157(9), 1671–1685 (2010)

    Google Scholar 

  29. Cannon, S.M., Brewster, B.S., Smoot, L.D.: PDF modeling of lean premixed combustion using in situ tabulated chemistry. Combust. Flame 119(3), 233–252 (1999)

    Article  Google Scholar 

  30. Jones, W.P., Navarro-Martinez, S.: Large eddy simulation of a premixed turbulent flame using a probability density function approach: In: Proceedings of the European Combustion Meeting, Cardiff, Wales (2011)

  31. Yilmaz, S.L., Nik, M.B., Givi, P., Strakey, P.A.: Scalar filtered density function for large eddy simulation of a Bunsen burner. J. Propuls. Power 26(1), 84–93 (2010)

    Article  Google Scholar 

  32. Kempf, A.: Large eddy simulation of non-premixed turbulent flames. Ph.D. thesis, Technischen Universitat Darmstadt (2003)

  33. di Mare, F.: Large eddy simulation of reacting and non-reacting turbulent flows. Ph.D. thesis, Imperial College London (2002)

  34. Gao, F., O’ Brien, E.: A large eddy simulation scheme for turbulent reacting flows. Phys. Fluids 9(7), 1282–1284 (1993)

    Google Scholar 

  35. Schmidt, H., Schumann, U.: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200, 511–562 (1989)

    Article  MATH  Google Scholar 

  36. Jones, W.P., Navarro-Martinez, S.: Large eddy simulations and the filtered probability density function method, LES and DNS of ignition and complex-structure flames with local extinction. In: AIP Proceedings (2009)

  37. Branley, N., Jones, W.P.: Large eddy simulation of a turbulent non-premixed flame. Combust. Flame 127(1), 1914–1934 (2001)

    Article  Google Scholar 

  38. Dopazo, C., O’ Brien, E.: Functional formulation of non isothermal turbulent reactive flows. Phys. Fluids 17, 1968–1975 (1974)

  39. Villermaux, J., Devillon, J.C.: Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique. In: Proceedings of the 2nd International Symposium on Chemical Reaction Engineering (1972)

  40. Fox, R.O.: Computational models for turbulent reacting flows. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  41. Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36(2), 168–259 (2010)

    Article  Google Scholar 

  42. Prasad, N.: Large eddy simulation of partially premixed turbulent combustion. Ph.D. thesis, Imperial College London (2011)

  43. Warhaft, Z., Lumley, J.L.: Experimental study of decay of temperature-fluctuations in grid-generated turbulence. J. Fluid Mech. 88, 659–684 (1978)

    Article  Google Scholar 

  44. Kulkarni, R., Polifke, W.: LES of Delft-Jet-In-Hot-Coflow (DHJC) wth tabulated chemistry and stochastic fields combustion model. In: 11th International Conference on Combustion and Energy Utilization, Coimbra, Portugal (2012)

  45. Jones, W.P., Prasad, V.N.: LES-pdf simulation of a spark ignited turbulent methane jet. Proc. Combust. Inst. 33, 2153–2160 (2011)

    Article  Google Scholar 

  46. Jones, W.P., Lyra, S., Navarro-Martinez, S.: Large eddy simulation of a swirl stabilized spray flame. Proc. Combust. Inst. 33, 1355–1363 (2011)

    Article  Google Scholar 

  47. Jones, W.P., Lyra, S., Navarro-Martinez, S.: Numerical investigation of swirling kerosene spray flames using large eddy simulation. Combust. Flame 33, 1539–1561 (2012)

    Article  Google Scholar 

  48. Valiño, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60, 157–172 (1998)

    Article  MATH  Google Scholar 

  49. Sabel’nikov, V., Soulard, O.: White in time scalar advection model as tool for solving joint composition PDF equations. Flow Turbul. Combust. 77, 333–357 (2006)

    Article  MATH  Google Scholar 

  50. Soulard, O.: Approaches PDF pour la combustion turbulente. Ph.D. Thesis, Universite de Rouen (2005)

  51. Jones, W.P., di Mare, F., Marquis, A.J.: LES BOFFIN: users guide. Technical Memorandum, Imperial College London (2002)

  52. Gardiner, C.: Handbook of Stochastic Methods. Springer, New-York (1985)

    Google Scholar 

  53. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1992)

    MATH  Google Scholar 

  54. Chen, Y.C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107, 223–244 (1996)

    Article  Google Scholar 

  55. Herrmann, M.: Numerical simulation of turbulent Bunsen flames with the level set flamelet model. Combust. Flame 145, 357–375 (2006)

    Article  Google Scholar 

  56. Salehi, M., Bushe, W.: Presumed PDF modelling for RANS simulation of turbulent premixed flames. Combust. Theory Model. 14, 381–403 (2010)

    Article  MATH  Google Scholar 

  57. Stöllinger, M.K., Stefan, H.: Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame. Combust. Flame 157(9), 1671–1685 (2010)

    Article  Google Scholar 

  58. Kolla, H.: Scalar dissipation rate based flamelet modelling of turbulent premixed flames. Ph.D. Thesis, University of Cambridge (2009)

  59. Salehi, M., Bushe, K., Daun, K.: Application of the conditional source term estimation for turbulence chemistry interactions in a premixed flame. Combust. Theory Model. 16(2), 301–320 (2012)

    Article  Google Scholar 

  60. Prasad, R.O.S., Gore, J.P.: An evaluation of flame surface density models for turbulent premixed jet flames. Combust. Flame 116, 1–14 (1999)

    Article  Google Scholar 

  61. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  62. Pitsch, H., Steiner, H.: Large eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12(10), 2541–2554 (2010)

    Article  Google Scholar 

  63. Akselvoll, K., Moin, P.: Large-eddy simulation of turbulent confined coannular jets. J. Fluid Mech. 315, 387–411 (1996)

    Article  Google Scholar 

  64. Danaila, I., Boersma, B.J.: Direct Numerical Simulation of bifurcating jets. Phys. Fluids 12(5), 1256–1257 (2000)

    Article  Google Scholar 

  65. Navarro-Martinez, S., Kronenburg, A., di Mare, F.: Conditional moment closure for large eddy simulations, Flow Turbul. Combust. 75, 245–274 (2005)

    MATH  Google Scholar 

  66. Sung, C.J., Law C.K., Chen, J.Y.: Augmented Reduced mechanisms for NO emission in methane oxidation. Combust. Flame 125, 906–919 (2001)

    Article  Google Scholar 

  67. Jones, W.P., Lindstedt, R.P.: Global reaction schemes for hydrocarbon combustion. Combust. Flame 73(3), 233–249 (1988)

    Article  Google Scholar 

  68. Kuo, K.K.: Principles of Combustion, 2nd edn. John Wiley & Sons, New Jersey (2005)

    Google Scholar 

  69. Duwig, C., Nogenmyr, K.J., Chan, C., Dunn M.J.: Large eddy simulations of a piloted lean premix jet flame using finite rate chemistry. Combust. Theory Model. 15(4), 537–568 (2011)

    Article  MATH  Google Scholar 

  70. Duwig, C., Fuchs, L.: Large eddy simulation of a H2/N2 lifted flame in a vitiated co-flow. Combust. Sci. Technol. 180, 453–480 (2008)

    Article  Google Scholar 

  71. Fureby, C.: Comparison of flamelet and finite rate chemistry LES for premixed turbulent combustion. AIAA Pap. 2007–1413 (2007)

  72. Pope, S.B.: Monte Carlo calculations of premixed turbulent flames. Proc. Combust. Inst. 18, 1001–1010 (1981)

    Google Scholar 

  73. Overholt, M.R., Pope, S.B.: Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence. Phys. Fluids 8(11), 3128–3148 (1996)

    Article  MATH  Google Scholar 

  74. Rowinski, D., Pope, S.B.: PDF calculations of piloted premixed jet flames. Combust. Theory Model. 15(2), 245–266 (2011)

    Article  MATH  Google Scholar 

  75. Chakraborty, N., Cant, R.S.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105 (2005)

    Article  Google Scholar 

  76. McDermott, R., Pope, S.B.: A particle formulation for treating differential diffusion in filtered density function methods. J. Comp. Phys. 226(1), 947–993 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  77. Richardson, E.S., Chen, J.H.: Application of PDF mixing models to premixed flames with differential diffusion. Combust. Flame 159, 2398–2414 (2012)

    Article  Google Scholar 

  78. Garmory, A., Mastorakos, E.: Capturing localised extinction in Sandia flame F with LES-CMC. Proc. Combust. Inst. 33, 1673–1680 (2011)

    Article  Google Scholar 

  79. Jones, W.P., Marquis, A.J., Prasad, V.N.: Les of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust. Flame 159(10), 3079–3095 (2012)

    Article  Google Scholar 

  80. Aspden, A.J., Day, M.S., Bell, J.B.: Turbulence-flame interactions in lean premixed hydrogen: transition to distributed burning regime. J. Fluid Mech. 680, 287–320 (2011)

    Article  MATH  Google Scholar 

  81. Aspden, A.J., Bell, J.B., Woosley, S.E.: Distributed flames in type Ia supernovae. Astrophys. J. 710(2), 1654–1663 (2010)

    Article  Google Scholar 

  82. Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158(11), 2199–2213 (2011)

    Article  Google Scholar 

  83. Jones, W.P., Tyliszczak, A.: Large eddy simulation of spark ignition in a gas turbine combustor. Flow Turbul. Combust. 85, 711–734 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Navarro-Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodoulas, I.A., Navarro-Martinez, S. Large Eddy Simulation of Premixed Turbulent Flames Using the Probability Density Function Approach. Flow Turbulence Combust 90, 645–678 (2013). https://doi.org/10.1007/s10494-013-9446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9446-z

Keywords

Navigation