Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3-4/2017

11.08.2017

A Comparison of Strategies for Direct Numerical Simulation of Turbulence Chemistry Interaction in Generic Planar Turbulent Premixed Flames

verfasst von: Markus Klein, Nilanjan Chakraborty, Sebastian Ketterl

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3-4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three different methods to introduce turbulence in the computational domain of Direct Numerical Simulations (DNS) of statistically planar turbulent premixed flame configurations have been reviewed and their advantages and disadvantages in terms of run time, natural flame development, control of turbulence parameters and convergence of statistics extracted from the simulations have been discussed in detail. It has been found that there is no method, which is clearly superior to the other two alternative methods. An analysis has been performed to explain why Lundgren’s physical space linear forcing results in an integral length scale which is, independent of the Reynolds number, a constant fraction of the domain size. Furthermore, an evolution equation for the integral length scale has been derived, and a scaling analysis of its terms has been performed to explain the evolution of the integral length scale in the context of Lundgren’s physical space linear forcing. Finally, a modification to Lundgren’s forcing approach has been suggested which ensures that the integral length scale settles to a predetermined value so that DNS of statistically planar turbulent premixed flames with physical space forcing can be conducted for prescribed values of Damköhler and Karlovitz numbers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Trouvé, A.: The production of premixed flame surface area in turbulent shear flow. Combust. Flame 99, 687–696 (1994)CrossRef Trouvé, A.: The production of premixed flame surface area in turbulent shear flow. Combust. Flame 99, 687–696 (1994)CrossRef
2.
Zurück zum Zitat Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust. 2011, Article ID 473679 (2011) Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust. 2011, Article ID 473679 (2011)
3.
Zurück zum Zitat Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame 152, 194–205 (2008)CrossRef Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame 152, 194–205 (2008)CrossRef
4.
Zurück zum Zitat Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19, 115114 (2007)MATH Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19, 115114 (2007)MATH
5.
Zurück zum Zitat Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence, NASA Technical Memorandum, vol. 81315. NASA Ames Research Center, California (1981) Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence, NASA Technical Memorandum, vol. 81315. NASA Ames Research Center, California (1981)
6.
Zurück zum Zitat Rutland, C.J., Cant, R.S.: Turbulent transport in premixed flames.. In: Proceedings of Summer Program, Center for Turbulence Research, pp. 75–94 (1994) Rutland, C.J., Cant, R.S.: Turbulent transport in premixed flames.. In: Proceedings of Summer Program, Center for Turbulence Research, pp. 75–94 (1994)
7.
Zurück zum Zitat Nishiki, S., Hasegawa, T., Borghi, R., Himeno, R.: Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases. Combust. Theor. Model. 10(1), 39–55 (2006)CrossRefMATH Nishiki, S., Hasegawa, T., Borghi, R., Himeno, R.: Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases. Combust. Theor. Model. 10(1), 39–55 (2006)CrossRefMATH
8.
Zurück zum Zitat Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef
9.
Zurück zum Zitat Aspden, A.J., Day, M. S., Bell, J.B.: Turbulence-flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287–320 (2011)CrossRefMATH Aspden, A.J., Day, M. S., Bell, J.B.: Turbulence-flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287–320 (2011)CrossRefMATH
10.
Zurück zum Zitat Poludnenko, A.Y., Oran, E.S: The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)CrossRef Poludnenko, A.Y., Oran, E.S: The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)CrossRef
11.
Zurück zum Zitat Savard, B., Blanquart, G.: Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame 162, 2020–2033 (2015)CrossRef Savard, B., Blanquart, G.: Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame 162, 2020–2033 (2015)CrossRef
12.
Zurück zum Zitat Lundgren, T.: Linear Forced Isotropic Turbulence in Annual Research Briefs. Center for Turbulence Research, Stanford, pp. 461–473 (2003) Lundgren, T.: Linear Forced Isotropic Turbulence in Annual Research Briefs. Center for Turbulence Research, Stanford, pp. 461–473 (2003)
13.
Zurück zum Zitat Rosales, C, Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 095106 (2005)MathSciNetCrossRefMATH Rosales, C, Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 095106 (2005)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Carroll, P.L., Blanquart, G.: A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 105114 (2013)CrossRef Carroll, P.L., Blanquart, G.: A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 105114 (2013)CrossRef
15.
Zurück zum Zitat Carroll, P.L., Blanquart, G.: The effect of velocity field forcing techniques on the Karman–Howarth equation. J. Turbul. 15, 429–448 (2014)MathSciNetCrossRef Carroll, P.L., Blanquart, G.: The effect of velocity field forcing techniques on the Karman–Howarth equation. J. Turbul. 15, 429–448 (2014)MathSciNetCrossRef
16.
Zurück zum Zitat Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reaction-zones regime. Combust. Flame 145, 415–434 (2006)CrossRef Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reaction-zones regime. Combust. Flame 145, 415–434 (2006)CrossRef
17.
Zurück zum Zitat Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)CrossRef Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)CrossRef
18.
Zurück zum Zitat Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comp. Physics 186, 652–665 (2003)CrossRefMATH Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comp. Physics 186, 652–665 (2003)CrossRefMATH
19.
Zurück zum Zitat Chakraborty, N., Cant, R.S.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158, 1768–1787 (2011)CrossRef Chakraborty, N., Cant, R.S.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158, 1768–1787 (2011)CrossRef
20.
Zurück zum Zitat Chakraborty, N., Wang, L., Klein M.: Streamline segment statistics of premixed flames with nonunity Lewis numbers. Phys. Rev. E 89, 033015 (2014)CrossRef Chakraborty, N., Wang, L., Klein M.: Streamline segment statistics of premixed flames with nonunity Lewis numbers. Phys. Rev. E 89, 033015 (2014)CrossRef
21.
Zurück zum Zitat Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRefMATH Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRefMATH
22.
Zurück zum Zitat Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)CrossRef Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)CrossRef
23.
Zurück zum Zitat Denet, B., Haldenwang, P.: A numerical study of premixed flames Darrieus-landau instability. Combust. Sci. Tech. 104, 143–167 (1995)CrossRef Denet, B., Haldenwang, P.: A numerical study of premixed flames Darrieus-landau instability. Combust. Sci. Tech. 104, 143–167 (1995)CrossRef
24.
Zurück zum Zitat Tennekes, H, Lumley, J.L.: A First Course in Turbulence, 1st edn. MIT Press, Cambridge (1972) Tennekes, H, Lumley, J.L.: A First Course in Turbulence, 1st edn. MIT Press, Cambridge (1972)
25.
Zurück zum Zitat Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Compos. Mater. 5, 329–359 (1996)MathSciNetMATH Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Compos. Mater. 5, 329–359 (1996)MathSciNetMATH
26.
27.
Zurück zum Zitat Wacks, D.H., Chakraborty, N., Klein, M., Arias, P.G., Im, H.G.: Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis. Phys. Rev. Fluids 1, 083401 (2016)CrossRef Wacks, D.H., Chakraborty, N., Klein, M., Arias, P.G., Im, H.G.: Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis. Phys. Rev. Fluids 1, 083401 (2016)CrossRef
28.
Zurück zum Zitat Ashurst, W., Kerstein, A., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids A 30, 2343 (1987)CrossRef Ashurst, W., Kerstein, A., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids A 30, 2343 (1987)CrossRef
30.
Zurück zum Zitat Jimenez, J.: Kinematic alignment effects in turbulent flows. Phys. Fluids A 4, 652 (1992)CrossRef Jimenez, J.: Kinematic alignment effects in turbulent flows. Phys. Fluids A 4, 652 (1992)CrossRef
31.
Zurück zum Zitat Batchelor, G., Townsend, A.: The nature of turbulent motion at large wave-numbers. In: Proceedings of the Royal Society of London A: Mathematical, 240 Physical and Engineering Sciences, volume 199, The Royal Society, pp. 238–255 (1949) Batchelor, G., Townsend, A.: The nature of turbulent motion at large wave-numbers. In: Proceedings of the Royal Society of London A: Mathematical, 240 Physical and Engineering Sciences, volume 199, The Royal Society, pp. 238–255 (1949)
32.
Zurück zum Zitat Monin, A.S., Yaglom, A.M.: Statistical Fluid mechanics, volume II: Mechanics of turbulence, volume 2. Courier Corporation (2013) Monin, A.S., Yaglom, A.M.: Statistical Fluid mechanics, volume II: Mechanics of turbulence, volume 2. Courier Corporation (2013)
33.
Zurück zum Zitat She, Z.-S., Jackson, E., Orszag, S.A.: Scale-dependent intermittency and coherence in turbulence. J. Sci. Comput. 3, 407–434 (1988)CrossRefMATH She, Z.-S., Jackson, E., Orszag, S.A.: Scale-dependent intermittency and coherence in turbulence. J. Sci. Comput. 3, 407–434 (1988)CrossRefMATH
34.
Zurück zum Zitat Yamamoto, K., Kambe, T.: Gaussian and near-exponential probability distributions of turbulence obtained from a numerical simulation. Fluid Dyn. Res. 8, 65–72 (1991)CrossRef Yamamoto, K., Kambe, T.: Gaussian and near-exponential probability distributions of turbulence obtained from a numerical simulation. Fluid Dyn. Res. 8, 65–72 (1991)CrossRef
35.
Zurück zum Zitat Mallouppas, G., George, W.K., van Wachem, B.G.M.: New forcing scheme to sustain particle-laden homogeneous and isotropic turbulence. Phys. Fluids 25, 083304 (2013)CrossRef Mallouppas, G., George, W.K., van Wachem, B.G.M.: New forcing scheme to sustain particle-laden homogeneous and isotropic turbulence. Phys. Fluids 25, 083304 (2013)CrossRef
36.
Zurück zum Zitat Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257–278 (1988)CrossRefMATH Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257–278 (1988)CrossRefMATH
Metadaten
Titel
A Comparison of Strategies for Direct Numerical Simulation of Turbulence Chemistry Interaction in Generic Planar Turbulent Premixed Flames
verfasst von
Markus Klein
Nilanjan Chakraborty
Sebastian Ketterl
Publikationsdatum
11.08.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3-4/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9843-9

Weitere Artikel der Ausgabe 3-4/2017

Flow, Turbulence and Combustion 3-4/2017 Zur Ausgabe

EditorialNotes

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.