Skip to main content
Erschienen in: Flow, Turbulence and Combustion 2/2019

23.05.2019

Evolution of Flame Curvature in Turbulent Premixed Bunsen Flames at Different Pressure Levels

verfasst von: Ahmad Alqallaf, Markus Klein, Cesar Dopazo, Nilanjan Chakraborty

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The physical mechanisms underlying the curvature evolution in turbulent premixed Bunsen flames at different thermodynamic pressures are investigated using a three-dimensional Direct Numerical Simulation database. It is found that, due to the occurrence of the Darrieus-Landau instability, the high-pressure flame exhibits higher probability of developing large negative curvature values and saddle concave topologies than the low pressure cases. The terms in the curvature transport equation due to normal strain rate gradients and curl of vorticity arising from both turbulent flow and flame normal propagation play pivotal roles in the curvature evolution. The mean value of the net contribution of the flame propagation terms dominates over the net contributions arising from the background fluid motion. The net contribution of the source/sink terms tries to reduce the convexity of the flame surface in the positively curved locations. By contrast, the net contribution of the source/sink terms promotes concavity of the flame surface towards the reactants in the negatively curved regions and this effect is particularly strong for the high pressure flame, where the effects of the Darrieus-Landau instability are prominent. This also gives rise to large negative skewness of the probability density functions of curvature in the high-pressure flame with the Darrieus-Landau instability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. J. Phys. Rev. E. 76, 056316 (2007)CrossRef Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. J. Phys. Rev. E. 76, 056316 (2007)CrossRef
2.
Zurück zum Zitat Cant, R.S., Rutland, C.J., Trouvé, A.: Statistics for laminar flamelet modelling. Proc. Summer Prog. 1990, Center for Turbulence Research, Stanford. 271–279 (1990) Cant, R.S., Rutland, C.J., Trouvé, A.: Statistics for laminar flamelet modelling. Proc. Summer Prog. 1990, Center for Turbulence Research, Stanford. 271–279 (1990)
3.
Zurück zum Zitat Poinsot, T. and Veynante, D.: Theoretical and Numerical Combustion, R.T.Edwards Inc., Philadelphia, USA (2001) Poinsot, T. and Veynante, D.: Theoretical and Numerical Combustion, R.T.Edwards Inc., Philadelphia, USA (2001)
4.
Zurück zum Zitat Pelcé, P.: (Ed.), Dynamics of curved fronts, Academic Press Inc. (1988) Pelcé, P.: (Ed.), Dynamics of curved fronts, Academic Press Inc. (1988)
5.
Zurück zum Zitat Markstein, G.H.: Experimental and theoretical studies of flame-front stability. J. Aero. Sci. 18, 199–209 (1951)CrossRef Markstein, G.H.: Experimental and theoretical studies of flame-front stability. J. Aero. Sci. 18, 199–209 (1951)CrossRef
6.
Zurück zum Zitat Clavin, P., Joulin, G.: Premixed flames in large scale and high intensity turbulent flows. J. Phys. Lett. 44, L–1-L-12 (1983)CrossRef Clavin, P., Joulin, G.: Premixed flames in large scale and high intensity turbulent flows. J. Phys. Lett. 44, L–1-L-12 (1983)CrossRef
7.
Zurück zum Zitat Mikolaitis, D.W.: The interaction of flame curvature and stretch, part 1: the concave premixed flame. Combust. Flame. 57, 25–31 (1984)CrossRef Mikolaitis, D.W.: The interaction of flame curvature and stretch, part 1: the concave premixed flame. Combust. Flame. 57, 25–31 (1984)CrossRef
8.
Zurück zum Zitat Mikolaitis, D.W.: The interaction of flame curvature and stretch, part 2: the convex premixed flame. Combust. Flame. 58, 23–29 (1984)CrossRef Mikolaitis, D.W.: The interaction of flame curvature and stretch, part 2: the convex premixed flame. Combust. Flame. 58, 23–29 (1984)CrossRef
9.
Zurück zum Zitat Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame. 106, 184–202 (1996)CrossRef Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame. 106, 184–202 (1996)CrossRef
10.
Zurück zum Zitat Renou, B., Boukhalfa, A., Peuchberty, D., Trinité, M.: Effects of stretch on the local structure of freely propagating premixed low-turbulent flames with various Lewis numbers. Proc. Combust. Inst. 29, 841–847 (1998)CrossRef Renou, B., Boukhalfa, A., Peuchberty, D., Trinité, M.: Effects of stretch on the local structure of freely propagating premixed low-turbulent flames with various Lewis numbers. Proc. Combust. Inst. 29, 841–847 (1998)CrossRef
11.
Zurück zum Zitat Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)CrossRef Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)CrossRef
12.
Zurück zum Zitat Echekki, T., Chen, J.H.: Analysis of the contributions of curvature to premixed flame propagation. Combust. Flame. 118, 308–311 (1999)CrossRef Echekki, T., Chen, J.H.: Analysis of the contributions of curvature to premixed flame propagation. Combust. Flame. 118, 308–311 (1999)CrossRef
13.
Zurück zum Zitat Chen, J.H., Im, H.G.: Correlation of flame speed with stretch in turbulent premixed methane/air flames. Proc. Combust. Inst., Pittsburgh. 27, 819–826 (1998)CrossRef Chen, J.H., Im, H.G.: Correlation of flame speed with stretch in turbulent premixed methane/air flames. Proc. Combust. Inst., Pittsburgh. 27, 819–826 (1998)CrossRef
14.
Zurück zum Zitat Chen, J.H., Im, H.G.: Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28, 211–218 (2000)CrossRef Chen, J.H., Im, H.G.: Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28, 211–218 (2000)CrossRef
15.
Zurück zum Zitat Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane air flames. Combust. Flame. 138, 242–258 (2004)CrossRef Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane air flames. Combust. Flame. 138, 242–258 (2004)CrossRef
16.
Zurück zum Zitat Hawkes, E.R., Chen, J.H.: Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst. 30, 647–655 (2005)CrossRef Hawkes, E.R., Chen, J.H.: Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst. 30, 647–655 (2005)CrossRef
17.
Zurück zum Zitat Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in inlet-outlet configuration. Combust. Flame. 137, 129–147 (2004)CrossRef Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in inlet-outlet configuration. Combust. Flame. 137, 129–147 (2004)CrossRef
18.
Zurück zum Zitat Chakraborty, N., Cant, R.S.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime, Phys. Fluids. 17, 105105 (2005)CrossRefMATH Chakraborty, N., Cant, R.S.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime, Phys. Fluids. 17, 105105 (2005)CrossRefMATH
19.
Zurück zum Zitat Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids. 17(65108), (2005) Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids. 17(65108), (2005)
20.
Zurück zum Zitat Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin reaction zones regime. Combust. Flame. 145, 415–434 (2006)CrossRef Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin reaction zones regime. Combust. Flame. 145, 415–434 (2006)CrossRef
21.
Zurück zum Zitat Klein, M., Chakraborty, N., Jenkins, K.W., Cant, R.S.: Effects of initial radius on the propagation of spherical premixed flame kernels in turbulent environment. Phys. Fluids. 18, 055102 (2006)MathSciNetCrossRefMATH Klein, M., Chakraborty, N., Jenkins, K.W., Cant, R.S.: Effects of initial radius on the propagation of spherical premixed flame kernels in turbulent environment. Phys. Fluids. 18, 055102 (2006)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Savarianandam, V.R., Lawn, C.J.: Burning velocity of premixed turbulent flames in the weakly wrinkled regime. Combust Flame. 146, 1–18 (2006)CrossRef Savarianandam, V.R., Lawn, C.J.: Burning velocity of premixed turbulent flames in the weakly wrinkled regime. Combust Flame. 146, 1–18 (2006)CrossRef
23.
Zurück zum Zitat Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids. 19, 105109 (2007)CrossRefMATH Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids. 19, 105109 (2007)CrossRefMATH
24.
Zurück zum Zitat Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on surface density function transport in turbulent premixed CH4-air and H2-air flames: a comparative study. Combust. Flame. 154, 259–280 (2008)CrossRef Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on surface density function transport in turbulent premixed CH4-air and H2-air flames: a comparative study. Combust. Flame. 154, 259–280 (2008)CrossRef
25.
Zurück zum Zitat Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame. 152, 194–205 (2008)CrossRef Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame. 152, 194–205 (2008)CrossRef
26.
Zurück zum Zitat Hartung, G., Hult, J., Balachandran, R., Mackley, M.R., Kaminski, C.F.: Flame front tracking in turbulent lean premixed flames. Applied Physics B. 96, 843–862 (2009)CrossRef Hartung, G., Hult, J., Balachandran, R., Mackley, M.R., Kaminski, C.F.: Flame front tracking in turbulent lean premixed flames. Applied Physics B. 96, 843–862 (2009)CrossRef
27.
Zurück zum Zitat Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime turbulent premixed combustion. J. Combust. 473679 (2011) Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime turbulent premixed combustion. J. Combust. 473679 (2011)
28.
Zurück zum Zitat Chakraborty, N., Hartung, G., Katragadda, M., Kaminski, C.F.: A numerical comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed. Combust. Flame. 158, 1372–1390 (2011)CrossRef Chakraborty, N., Hartung, G., Katragadda, M., Kaminski, C.F.: A numerical comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed. Combust. Flame. 158, 1372–1390 (2011)CrossRef
29.
Zurück zum Zitat Kerl, J., Lawn, C., Beyrau, F.: Three-dimensional flame displacement speed and flame front curvature measurements using quad-plane PIV. Combust. Flame. 160, 2757–2769 (2013)CrossRef Kerl, J., Lawn, C., Beyrau, F.: Three-dimensional flame displacement speed and flame front curvature measurements using quad-plane PIV. Combust. Flame. 160, 2757–2769 (2013)CrossRef
30.
Zurück zum Zitat Giannakopoulos, G.K., Matalon, M., Frouzakis, C.E., Tamboulides, A.G.: The curvature Markstein length and the definition of flame displacement speed for stationary spherical flames. Proc. Combust. Inst. 35, 737–743 (2015)CrossRef Giannakopoulos, G.K., Matalon, M., Frouzakis, C.E., Tamboulides, A.G.: The curvature Markstein length and the definition of flame displacement speed for stationary spherical flames. Proc. Combust. Inst. 35, 737–743 (2015)CrossRef
31.
Zurück zum Zitat Chakraborty, N., Klein, M.: Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids. 20, 065102 (2008)CrossRefMATH Chakraborty, N., Klein, M.: Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids. 20, 065102 (2008)CrossRefMATH
32.
Zurück zum Zitat Chakraborty, N., Klein, M.: Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zone regime. Proc. Combust. Inst. 32, 1435–1443 (2009)CrossRef Chakraborty, N., Klein, M.: Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zone regime. Proc. Combust. Inst. 32, 1435–1443 (2009)CrossRef
33.
Zurück zum Zitat Sandeep, A., Proch, F., Kempf, A.M., Chakraborty, N.: Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner. Phys. Fluids. 30, 065101 (2018)CrossRef Sandeep, A., Proch, F., Kempf, A.M., Chakraborty, N.: Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner. Phys. Fluids. 30, 065101 (2018)CrossRef
36.
Zurück zum Zitat Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)CrossRef Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)CrossRef
37.
Zurück zum Zitat Rutland, C., Trouvé, A.: Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame. 94, 41–57 (1993)CrossRef Rutland, C., Trouvé, A.: Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame. 94, 41–57 (1993)CrossRef
38.
Zurück zum Zitat Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Review E. 94, 053102 (2016)MathSciNetCrossRef Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Review E. 94, 053102 (2016)MathSciNetCrossRef
42.
Zurück zum Zitat Cifuentes, L., Dopazo, C., Karichedu, A., Chakraborty, N., Kempf, A.M.: Analysis of flame curvature evolution in a turbulent premixed bluff body burner. Phys. Fluids. 30, 095101 (2018)CrossRef Cifuentes, L., Dopazo, C., Karichedu, A., Chakraborty, N., Kempf, A.M.: Analysis of flame curvature evolution in a turbulent premixed bluff body burner. Phys. Fluids. 30, 095101 (2018)CrossRef
43.
Zurück zum Zitat Turns, S.R.: An Introduction to Combustion: Concepts and Applications, 3rd edn. McGraw Hill (2001) Turns, S.R.: An Introduction to Combustion: Concepts and Applications, 3rd edn. McGraw Hill (2001)
44.
Zurück zum Zitat Peters, N.: Turbulent Combustion, Cambridge Monograph on Mechanics. Cambridge University Press, Cambridge (2000)CrossRef Peters, N.: Turbulent Combustion, Cambridge Monograph on Mechanics. Cambridge University Press, Cambridge (2000)CrossRef
45.
Zurück zum Zitat Dopazo, C., Cifuentes, L., Martin, J., Jimenez, C.: Strain rates normal to approaching isoscalar surfaces in a turbulent premixed flame. Combust. Flame. 162, 1729–1736 (2015)CrossRef Dopazo, C., Cifuentes, L., Martin, J., Jimenez, C.: Strain rates normal to approaching isoscalar surfaces in a turbulent premixed flame. Combust. Flame. 162, 1729–1736 (2015)CrossRef
46.
Zurück zum Zitat Jenkins, K.W., Cant, R.S.: DNS of turbulent flame kernels, In C. Liu, L. Sakell and T. Beautner (Eds.), Proc. 2nd AFOSR Conf. On DNS and LES, Kluwer Academic Publishers, 192–202 (1999) Jenkins, K.W., Cant, R.S.: DNS of turbulent flame kernels, In C. Liu, L. Sakell and T. Beautner (Eds.), Proc. 2nd AFOSR Conf. On DNS and LES, Kluwer Academic Publishers, 192–202 (1999)
47.
Zurück zum Zitat Chakraborty, N., Kolla, H., Sankaran, R., Hawkes, E.R., Chen, J.H., Swaminathan, N.: Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: direct numerical simulation based validation. Proc. Combust. Inst. 34, 1151–1162 (2013)CrossRef Chakraborty, N., Kolla, H., Sankaran, R., Hawkes, E.R., Chen, J.H., Swaminathan, N.: Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: direct numerical simulation based validation. Proc. Combust. Inst. 34, 1151–1162 (2013)CrossRef
48.
Zurück zum Zitat Dopazo, C., Cifuentes, L., Chakraborty, N.: Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers. Phys. Fluids. 29, 045106 (2017)CrossRef Dopazo, C., Cifuentes, L., Chakraborty, N.: Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers. Phys. Fluids. 29, 045106 (2017)CrossRef
49.
Zurück zum Zitat Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: A direct numerical study of vorticity transformation in weakly turbulent premixed flames. Phys. Fluids. 26, 105104 (2014)CrossRef Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: A direct numerical study of vorticity transformation in weakly turbulent premixed flames. Phys. Fluids. 26, 105104 (2014)CrossRef
50.
Zurück zum Zitat Gao, Y., Chakraborty, N., Klein, M.: Assessment of sub-grid scalar flux modelling in premixed flames for large Eddy simulations: A-priori direct numerical simulation. Eur. J. Mech. Fluids-B. 52, 97–108 (2015)CrossRefMATH Gao, Y., Chakraborty, N., Klein, M.: Assessment of sub-grid scalar flux modelling in premixed flames for large Eddy simulations: A-priori direct numerical simulation. Eur. J. Mech. Fluids-B. 52, 97–108 (2015)CrossRefMATH
51.
Zurück zum Zitat Papapostolou, V., Wacks, D.H., Klein, M., Chakraborty, N., Im, H.G.: Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion. Sci. Rep. 7, 11545 (2017)CrossRef Papapostolou, V., Wacks, D.H., Klein, M., Chakraborty, N., Im, H.G.: Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion. Sci. Rep. 7, 11545 (2017)CrossRef
52.
Zurück zum Zitat Klein, M., Kasten, C., Chakraborty, N., Mukhadiyev, N., Im, H.G.: Turbulent scalar fluxes in Ηydrogen-air premixed flames at low and high Karlovitz numbers. Combust. Theory Model. 22, 1033–1048 (2018)MathSciNetCrossRef Klein, M., Kasten, C., Chakraborty, N., Mukhadiyev, N., Im, H.G.: Turbulent scalar fluxes in Ηydrogen-air premixed flames at low and high Karlovitz numbers. Combust. Theory Model. 22, 1033–1048 (2018)MathSciNetCrossRef
53.
Zurück zum Zitat Gao, Y., Chakraborty, N.: Modelling of Lewis number dependence of scalar dissipation rate transport for large Eddy simulations of turbulent premixed combustion. Numer. Heat Trans. A. 69, 1201–1222 (2016)CrossRef Gao, Y., Chakraborty, N.: Modelling of Lewis number dependence of scalar dissipation rate transport for large Eddy simulations of turbulent premixed combustion. Numer. Heat Trans. A. 69, 1201–1222 (2016)CrossRef
54.
Zurück zum Zitat Lai, J., Chakraborty, N.: Effects of Lewis number on head on quenching of turbulent premixed flame: a direct numerical simulation analysis. Flow Turbul. Combust. 96, 279–308 (2016)CrossRef Lai, J., Chakraborty, N.: Effects of Lewis number on head on quenching of turbulent premixed flame: a direct numerical simulation analysis. Flow Turbul. Combust. 96, 279–308 (2016)CrossRef
55.
Zurück zum Zitat Gao, Y., Minamoto, Y., Tanahashi, M., Chakraborty, N.: A priori assessment of scalar dissipation rate closure for large Eddy simulations of turbulent premixed combustion using a detailed chemistry direct numerical simulation database. Combust. Sci. Technol. 188, 1398–1423 (2016)CrossRef Gao, Y., Minamoto, Y., Tanahashi, M., Chakraborty, N.: A priori assessment of scalar dissipation rate closure for large Eddy simulations of turbulent premixed combustion using a detailed chemistry direct numerical simulation database. Combust. Sci. Technol. 188, 1398–1423 (2016)CrossRef
56.
Zurück zum Zitat Lai, J., Klein, M., Chakraborty, N.: Direct numerical simulation of head-on quenching of statistically planar turbulent premixed methane-air flames using a detailed chemical mechanism. Flow Turbul. Combust. 101, 1073–1091 (2018)CrossRef Lai, J., Klein, M., Chakraborty, N.: Direct numerical simulation of head-on quenching of statistically planar turbulent premixed methane-air flames using a detailed chemical mechanism. Flow Turbul. Combust. 101, 1073–1091 (2018)CrossRef
57.
Zurück zum Zitat Savard, A., Lapointe, S., Teodorczyk, A.: Numerical investigation of the effect of pressure on heat release rate in iso-octane premixed turbulent flames under conditions relevant to SI engines. Proc. Combust. Inst. 36, 3543–3549 (2017)CrossRef Savard, A., Lapointe, S., Teodorczyk, A.: Numerical investigation of the effect of pressure on heat release rate in iso-octane premixed turbulent flames under conditions relevant to SI engines. Proc. Combust. Inst. 36, 3543–3549 (2017)CrossRef
58.
Zurück zum Zitat Poinsot, T., Lele, S.K.: Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys. 101, 104–129 (1992)MathSciNetCrossRefMATH Poinsot, T., Lele, S.K.: Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys. 101, 104–129 (1992)MathSciNetCrossRefMATH
59.
Zurück zum Zitat Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. Proc. Combust. Inst. 27, 941–948 (1998)CrossRef Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. Proc. Combust. Inst. 27, 941–948 (1998)CrossRef
60.
Zurück zum Zitat Chakraborty, N., Cant, R.S.: A-priori analysis of the curvature and propagation terms of the flame surface density transport equation for large Eddy simulation. Phys. Fluids. 19, 105101 (2007)CrossRefMATH Chakraborty, N., Cant, R.S.: A-priori analysis of the curvature and propagation terms of the flame surface density transport equation for large Eddy simulation. Phys. Fluids. 19, 105101 (2007)CrossRefMATH
61.
Zurück zum Zitat Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)CrossRef Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)CrossRef
62.
Zurück zum Zitat Gao, Y., Chakraborty, N., Swaminathan, N.: Local strain rate and curvature dependences of scalar dissipation rate transport in turbulent premixed flames: a direct numerical simulation analysis, J. Combust., 2014, 280671 (2014), 29 Gao, Y., Chakraborty, N., Swaminathan, N.: Local strain rate and curvature dependences of scalar dissipation rate transport in turbulent premixed flames: a direct numerical simulation analysis, J. Combust., 2014, 280671 (2014), 29
63.
Zurück zum Zitat Gao, Y., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate transport and its modelling for large Eddy simulations of turbulent premixed combustion. Combust. Sci. Technol. 187(3), 362–383 (2015)CrossRef Gao, Y., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate transport and its modelling for large Eddy simulations of turbulent premixed combustion. Combust. Sci. Technol. 187(3), 362–383 (2015)CrossRef
Metadaten
Titel
Evolution of Flame Curvature in Turbulent Premixed Bunsen Flames at Different Pressure Levels
verfasst von
Ahmad Alqallaf
Markus Klein
Cesar Dopazo
Nilanjan Chakraborty
Publikationsdatum
23.05.2019
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 2/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00027-x

Weitere Artikel der Ausgabe 2/2019

Flow, Turbulence and Combustion 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.