Skip to main content
Log in

Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  CAS  PubMed  Google Scholar 

  2. Adams ME, Dwyer TM, Dowler LL, White RA, Froehner SC (1995) Mouse alpha 1- and beta 2-syntrophin gene structure, chromosome localization, and homology with a discs large domain. J Biol Chem 270:25859–25865

    Article  CAS  PubMed  Google Scholar 

  3. Ahn AH, Yoshida M, Anderson MS et al (1994) Cloning of human basic A1, a distinct 59-kDa dystrophin-associated protein encoded on chromosome 8q23-24. Proc Natl Acad Sci USA 91:4446–4450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adams ME, Butler MH, Dwyer TM, Peters MF, Murnane AA, Froehner SC (1993) Two forms of mouse syntrophin, a 58 kd dystrophin-associated protein, differ in primary structure and tissue distribution. Neuron 11:531–540

    Article  CAS  PubMed  Google Scholar 

  5. Yang B, Ibraghimov-Beskrovnaya O, Moomaw CR, Slaughter CA, Campbell KP (1994) Heterogeneity of the 59-kDa dystrophin-associated protein revealed by cDNA cloning and expression. J Biol Chem 269:6040–6044

    CAS  PubMed  Google Scholar 

  6. Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nat Genet 3:283–291

    Article  CAS  PubMed  Google Scholar 

  7. Piluso G, Mirabella M, Ricci E et al (2000) Gamma1- and gamma2-syntrophins, two novel dystrophin-binding proteins localized in neuronal cells. J Biol Chem 275:15851–15860

    Article  CAS  PubMed  Google Scholar 

  8. Ahn AH, Kunkel LM (1995) Syntrophin binds to an alternatively spliced exon of dystrophin. J Cell Biol 128:363–371

    Article  CAS  PubMed  Google Scholar 

  9. Kramarcy NR, Vidal A, Froehner SC, Sealock R (1994) Association of utrophin and multiple dystrophin short forms with the mammalian M(r) 58,000 dystrophin-associated protein (syntrophin). J Biol Chem 269:2870–2876

    CAS  PubMed  Google Scholar 

  10. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  11. Campbell KP, Kahl SD (1989) Association of dystrophin and an integral membrane glycoprotein. Nature 338:259–262

    Article  CAS  PubMed  Google Scholar 

  12. Butler MH, Douville K, Murnane AA et al (1992) Association of the Mr 58,000 postsynaptic protein of electric tissue with Torpedo dystrophin and the Mr 87,000 postsynaptic protein. J Biol Chem 267:6213–6218

    CAS  PubMed  Google Scholar 

  13. Ahn AH, Freener CA, Gussoni E, Yoshida M, Ozawa E, Kunkel LM (1996) The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal locations, and each bind to dystrophin and its relatives. J Biol Chem 271:2724–2730

    Article  CAS  PubMed  Google Scholar 

  14. Bhat HF, Baba RA, Bashir M et al (2011) Alpha-1-syntrophin protein is differentially expressed in human cancers. Biomarkers 16:31–36

    Article  CAS  PubMed  Google Scholar 

  15. Adams ME, Kramarcy N, Krall SP et al (2000) Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol 150:1385–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90:3710–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abramovici H, Hogan AB, Obagi C, Topham MK, Gee SH (2003) Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins. Mol Biol Cell 14:4499–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hogan A, Yakubchyk Y, Chabot J et al (2004) The phosphoinositol 3,4-bisphosphate-binding protein TAPP1 interacts with syntrophins and regulates actin cytoskeletal organization. J Biol Chem 279:53717–53724

    Article  CAS  PubMed  Google Scholar 

  19. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  20. Madhavan R, Massom LR, Jarrett HW (1992) Calmodulin specifically binds three proteins of the dystrophin-glycoprotein complex. Biochem Biophys Res Commun 185:753–759

    Article  CAS  PubMed  Google Scholar 

  21. Iwata Y, Sampaolesi M, Shigekawa M, Wakabayashi S (2004) Syntrophin is an actin-binding protein the cellular localization of which is regulated through cytoskeletal reorganization in skeletal muscle cells. Eur J Cell Biol 83:555–565

    Article  CAS  PubMed  Google Scholar 

  22. Bhat HF, Adams ME, Khanday FA (2013) Syntrophin proteins as Santa Claus: role(s) in cell signal transduction. Cell Mol Life Sci 70:2533–2554

    Article  CAS  PubMed  Google Scholar 

  23. Kimber WA, Trinkle-Mulcahy L, Cheung PC et al (2002) Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J 361:525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dowler S, Currie RA, Downes CP, Alessi DR (1999) DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J 342(Pt 1):7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dowler S, Currie RA, Campbell DG et al (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marshall AJ, Krahn AK, Ma K, Duronio V, Hou S (2002) TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: sustained plasma membrane recruitment triggered by the B-cell antigen receptor. Mol Cell Biol 22:5479–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hasegawa M, Cuenda A, Spillantini MG et al (1999) Stress-activated protein kinase-3 interacts with the PDZ domain of alpha1-syntrophin. A mechanism for specific substrate recognition. J Biol Chem 274:12626–12631

    Article  CAS  PubMed  Google Scholar 

  28. Oak SA, Russo K, Petrucci TC, Jarrett HW (2001) Mouse alpha1-syntrophin binding to Grb2: further evidence of a role for syntrophin in cell signaling. Biochemistry 40:11270–11278

    Article  CAS  PubMed  Google Scholar 

  29. Oak SA, Zhou YW, Jarrett HW (2003) Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J Biol Chem 278:39287–39295

    Article  CAS  PubMed  Google Scholar 

  30. Bhat HF, Baba RA, Adams ME, Khanday FA (2014) Role of SNTA1 in Rac1 activation, modulation of ROS generation, and migratory potential of human breast cancer cells. Br J Cancer 110:706–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ridley AJ, Schwartz MA, Burridge K et al (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  32. Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144:1235–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kraynov VS, Chamberlain C, Bokoch GM, Schwartz MA, Slabaugh S, Hahn KM (2000) Localized Rac activation dynamics visualized in living cells. Science 290:333–337

    Article  CAS  PubMed  Google Scholar 

  34. Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114:2713–2722

    CAS  PubMed  Google Scholar 

  35. Benitah SA, Valeron PF, van Aelst L, Marshall CJ, Lacal JC (2004) Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta 1705:121–132

    CAS  PubMed  Google Scholar 

  36. Choi UJ, Jee BK, Lim Y, Lee KH (2009) KAI1/CD82 decreases Rac1 expression and cell proliferation through PI3K/Akt/mTOR pathway in H1299 lung carcinoma cells. Cell Biochem Funct 27:40–47

    Article  CAS  PubMed  Google Scholar 

  37. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whaley-Connell AT, Morris EM, Rehmer N et al (2007) Albumin activation of NAD(P)H oxidase activity is mediated via Rac1 in proximal tubule cells. Am J Nephrol 27:15–23

    Article  CAS  PubMed  Google Scholar 

  39. Ellenbroek SI, Collard JG (2007) Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24:657–672

    Article  CAS  PubMed  Google Scholar 

  40. Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582:2093–2101

    Article  CAS  PubMed  Google Scholar 

  41. Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81:682–687

    Article  CAS  PubMed  Google Scholar 

  42. Schnelzer A, Prechtel D, Knaus U et al (2000) Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19:3013–3020

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Rao Q, Wang M et al (2009) Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth. Biochem Biophy Res Commun 386:769–774

    Article  CAS  Google Scholar 

  44. Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS, Kazanietz MG (2012) Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal 24:353–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schliwa M (1982) Action of cytochalasin D on cytoskeletal networks. J Cell Biol 92:79–91

    Article  CAS  PubMed  Google Scholar 

  46. Brown SS, Spudich JA (1981) Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J Cell Biol 88:487–491

    Article  CAS  PubMed  Google Scholar 

  47. Casella JF, Flanagan MD, Lin S (1981) Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293:302–305

    Article  CAS  PubMed  Google Scholar 

  48. Pelham RJ Jr, Wang Y (1999) High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell 10:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coue M, Brenner SL, Spector I, Korn ED (1987) Inhibition of actin polymerization by latrunculin A. FEBS Lett 213:316–318

    Article  CAS  PubMed  Google Scholar 

  50. Konishi H, Kikuchi S, Ochiai T et al (2009) Latrunculin a has a strong anticancer effect in a peritoneal dissemination model of human gastric cancer in mice. Anticancer Res 29:2091–2097

    CAS  PubMed  Google Scholar 

  51. Wakatsuki T, Schwab B, Thompson NC, Elson EL (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci 114:1025–1036

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Deanship of Research, King Fahd University of Petroleum and Minerals, through the start-up grant scheme to Dr. Firdous A. Khanday, No. SR141006. It was partly financed by a grant to SSB by the University Grants Commission of India, No F. 17-82/2008(SA-I) to SSB. We are grateful to Dr. KS Siddiqui and A Ismail, for carrying out the scientific content and language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdous Ahmad Khanday.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.S., Parray, A.A., Mushtaq, U. et al. Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis. Apoptosis 21, 737–748 (2016). https://doi.org/10.1007/s10495-016-1241-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1241-6

Keywords

Navigation