Skip to main content
Log in

The Removal of Dissolved Metals by Hydroxysulphate Precipitates during Oxidation and Neutralization of Acid Mine Waters, Iberian Pyrite Belt

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

This study examines the removal of dissolved metals during the oxidation and neutralization of five acid mine drainage (AMD) waters from La Zarza, Lomero, Esperanza, Corta Atalaya and Poderosa mines (Iberian Pyrite Belt, Huelva, Spain). These waters were selected to cover the spectrum of pH (2.2–3.5) and chemical composition (e.g., 319–2,103 mg/L Fe; 2.85–33.3 g/L SO =4 ) of the IPB mine waters. The experiments were conducted in the laboratory to simulate the geochemical evolution previously recognized in the field. This evolution includes two stages: (1) oxidation of dissolved Fe(II) followed by hydrolysis and precipitation of Fe(III), and (2) progressive pH increase during mixing with fresh waters. Fe(III) precipitates at pH < 3.5 (stages 1 and 2) in the form of schwertmannite, whereas Al precipitates during stage 2 at pH 5.0 in the form of several hydroxysulphates of variable composition (hydrobasaluminite, basaluminite, aluminite). During these stages, trace elements are totally or partially sorbed and/or coprecipitated at different rates depending basically on pH, as well as on the activity of the SO =4 anion (which determines the speciation of metals). The general trend for the metals which are chiefly present as aqueous free cations (Pb2+, Zn2+, Cu2+, Cd2+, Mn2+, Co2+, Ni2+) is a progressive sorption at increasing pH. On the other hand, As and V (mainly present as anionic species) are completely scavenged during the oxidation stage at pH < 3.5. In waters with high activities (> 10−1) of the SO =4 ion, some elements like Al, Zn, Cd, Pb and U can also form anionic bisulphate complexes and be significantly sorbed at pH < 5. The removal rates at pH 7.0 range from around 100% for As, V, Cu and U, and 60–80% for Pb, to less than 20% for Zn, Co, Ni and Mn. These processes of metal removal represent a significant mechanism of natural attenuation in the IPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Adams Z. Rawajfih (1977) ArticleTitleBasaluminite and alunite: a possible cause of sulphate retention by acid soils Soil. Sci. Soc. Am. J. 41 686–692 Occurrence Handle10.2136/sssaj1977.03615995004100040013x

    Article  Google Scholar 

  • Alpers C.N. and Nordstrom D.K. (1999) Geochemical modeling of water-rock interactions in mining environments. In The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues (eds. G.S. Plumlee and M.J. Logsdon), Society of Economic Geologists. Rev. Econ. Geol. 6A, 289–323.

  • Ball, J.W. and Nordstrom D.K., 1991. User’s manual for WATEQ4F with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. pp. 91–183, 189. U.S. Geological Survey Open-File Report.

  • K. A. Baltpurvins R. C. Burns G. A. Lawrance A. D. Stuart (1997) ArticleTitleEffect of Ca2+, Mg2+, and anion type on the aging of iron(III) hydroxide precipitates Environ. Sci. Technol. 31 1024–1032 Occurrence Handle10.1021/es960498y

    Article  Google Scholar 

  • F. A. Bannister S. E. Hollingworth (1948) ArticleTitleBasaluminite hydrobasaluminite Am. Mineral. 33 787

    Google Scholar 

  • Basset H. and Goodwin T.H. (1949) The basic aluminum sulphates. J. Chem. Soc. 2239–2279.

  • A. C. Berger C. M. Bethke J. L. Krumhans (2000) ArticleTitleA process model of natural attenuation in drainage from a historic mining district Appl. Geochem. 15 655–666 Occurrence Handle10.1016/S0883-2927(99)00074-8

    Article  Google Scholar 

  • Bigham J.M. and Nordstrom D.K. (2000) Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters. In Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (eds. C.N. Alpers, J.L. Jambor and D.K. Nordstrom). Rev. Mineral. Geochem. 40, 351–403.

  • J. M. Bigham U. Schwertmann S. J. Traina R. L. Winland M. Wolf (1996) ArticleTitleSchwertmannite and the chemical modeling of iron in acid sulfate waters Geochim. Cosmochim. Acta 60 2111–2121 Occurrence Handle10.1016/0016-7037(96)00091-9

    Article  Google Scholar 

  • L. Carlson J. M. Bigham U. Schwertmann A. Kyek F. Wagner (2002) ArticleTitleScavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues Environ. Sci. Technol. 36 1712–1719 Occurrence Handle10.1021/es0110271

    Article  Google Scholar 

  • C. Casiot G. Morin F. Juillot O. Bruneel J. C. Personné M. Leblanc K. Duqesne V. Bonnefoy Elbaz-Poulichet (2003) ArticleTitleBacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulés creek, France) Water Res. 37 2929–2936 Occurrence Handle10.1016/S0043-1354(03)00080-0

    Article  Google Scholar 

  • B. M. Chapman D. R. Jones R. F. Jung (1983) ArticleTitleProcesses controlling metal ion attenuation in acid mine drainage streams Geochim. Cosmochim. Acta 47 1957–1973 Occurrence Handle10.1016/0016-7037(83)90213-2

    Article  Google Scholar 

  • T. Clayton (1980) ArticleTitleHydrobasaluminite and basaluminite from Chickerell, Dorset Mineral Mag. 43 931–937

    Google Scholar 

  • J. A. Davis D. B. Kent (1990) Surface complexation modeling in aqueous geochemistry M. F. Hochella A. F White (Eds) Mineral-Water Interface Geochemistry: Reviews in Mineralogy Mineralogical Society of America Washington, D.C. 177–260

    Google Scholar 

  • Dzombak D.A. and Morel F.M.M. Morel (1990) Surface Complexation Modeling-hydrous Ferric Oxide. John Wiley and Sons, 393 pp.

  • L. H. Filipek D. K. Nordstrom W. H. Ficklin (1987) ArticleTitleInteraction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining District, California Environ. Sci. Technol. 21 388–396 Occurrence Handle10.1021/es00158a009

    Article  Google Scholar 

  • K. Fukushi M. Sasaki T. Sato N. Yanese H. Amano H. Ikeda (2003) ArticleTitleA natural attenuation of arsenic in drainage from an abandoned arsenic mine dump Appl. Geochem. 18 1267–1278 Occurrence Handle10.1016/S0883-2927(03)00011-8

    Article  Google Scholar 

  • A. Fyson M. Kalin (2000) Acidity titration curves – a versatile tool for the characterization of acidic mine waste water K. Friese (Eds) et al. UFZ-Bericht Centre for Environmental Research Leipzig, Germany 21–24

    Google Scholar 

  • J. J. Kim S. J. Kim (2003) ArticleTitleEnvironmental, mineralogical, and genetic characterization of ochreous and white precipitates from acid mine drainages in Taebaeg, Korea Environ. Sci Technol. 37 2120–2126 Occurrence Handle10.1021/es026353a

    Article  Google Scholar 

  • Kinniburgh D.G. and Jackson M.L. (1981) Cation adsorption by hydrous metal oxides and clay; In Adsorption of Inorganics at Solid-Liquid Interfaces (eds. M.A. Anderson and A.J. Rubin), pp. 91–160. Ann Arbor Science, Ann Arbor, MI.

  • D. G. Kinniburgh M. L. Jackson J. K. Syers (1976) ArticleTitleAdsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum Soil Sci. Soc. Am. J. 40 796–799 Occurrence Handle10.2136/sssaj1976.03615995004000050047x

    Article  Google Scholar 

  • D. Langmuir (1997) Aqueous Environmental Geochemistry Prentice-Hall Inc. Upper Saddel River, NJ

    Google Scholar 

  • M. Leblanc B. Achard D. Ben Othman J. M. Luck (1996) ArticleTitleAccumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites) Appl. Geochem. 11 541–554 Occurrence Handle10.1016/0883-2927(96)00010-8

    Article  Google Scholar 

  • G. Lee J. M. Bigham G. Faure (2002) ArticleTitleRemoval of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee Appl. Geochem. 17 569–581 Occurrence Handle10.1016/S0883-2927(01)00125-1

    Article  Google Scholar 

  • D. K. Nordstrom (1982) ArticleTitleThe effect of sulphate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K Geochim. Cosmochim. Acta 46 681–692 Occurrence Handle10.1016/0016-7037(82)90168-5

    Article  Google Scholar 

  • Nordstrom D.K. (2004) Modeling low-temperature geochemical processes. In Treatise on Geochemistry, Surface and Ground Water, Weathering, and Soils (ex. eds. H.D. Holland and K.K. Turekian, ed. J.I. Drever), Vol. 5, pp. 37–72. Elsevier, Pergamon, Amsterdam.

  • D. K. Nordstrom J. W. Ball (1986) ArticleTitleThe geochemical behavior of aluminum in acidified surface waters Science 232 54–56

    Google Scholar 

  • D. K. Nordstrom J. W. Ball C. E. Robertson B. B. Hanshaw (1984) ArticleTitleThe effect of sulphate on aluminum concentrations in natural waters: II. Field occurrences and identification of aluminum hydroxysulphate precipitates Geol. Soc. Am. Program Abstr. 16 IssueID6 611

    Google Scholar 

  • Nordstrom D.K. and Alpers C.N. (1999) Geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues: Society of Economic Geologists (eds. G.S. Plumlee and M.J. Logsdon), Rev. Econ. Geol. 6A, 133–156.

  • Parkhurst D.L. and Appelo C.A.J. (1999) User’s guide to PHREEQC (Version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, pp. 99–4259. U.S. Geol. Surv. Water-Resour. Investig. Rep. Denver, Colorado.

  • S. Regenspurg S. Peiffer (2005) ArticleTitleArsenate and chromate incorporation in schwertmannite Appl. Geochem. 20 1226–1239 Occurrence Handle10.1016/j.apgeochem.2004.12.002

    Article  Google Scholar 

  • F. J. Sánchez-España E. López Pamo E. Santofimia O. Aduvire J. Reyes D. Barettino (2005a) ArticleTitleAcid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications Appl. Geochem. 20 1320–1356 Occurrence Handle10.1016/j.apgeochem.2005.01.011

    Article  Google Scholar 

  • J. Sánchez-España E. López-Pamo E. Santofimia J. Reyes J. A. Martín Rubí (2005b) ArticleTitleThe natural attenuation of two acidic effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Spain) Environ. Geol. 49 253–266 Occurrence Handle10.1007/s00254-005-0083-2

    Article  Google Scholar 

  • Sánchez-España J., López-Pamo E., Santofimia E., Reyes J. and Martín Rubí J.A. (2006) The impact of acid mine drainage on the water quality of the Odiel river (Huelva, Spain): Evolution of Precipitate Mineralogy and Aqueous Geochemistry Along The Concepción Tintillo Segment. Water Air Soil Pollut. 173, 121–149

  • Sánchez España F. J., López Pamo E. and Santofimia E. (in press) The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel Basin, Huelva, Spain): field and laboratory rates. J. Geochem. Explor.

  • Smith K.S. (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues: Society of Economic Geologists (eds. G.S. Plumlee and M.J. Losdon), Rev. Econ. Geol. 6A, 161–182

  • Smith K.S., Ficklin W.H., Plumlee G.S. and Meier A.L. (1992) Metal and arsenic partitioning between water and suspended sediment at mine-drainage sites in diverse geologic settings; In Water-Rock Interaction: 7th International Symposium on Water-Rock Interaction, Utah, July 13–18, 1992, (eds. Y.K. Kharaka and A.S. Maest), pp. 443–447. Proceedings, v. 1, Rotterdam, A.A. Balkema.

  • W. Stumm J. J. Morgan (1996) Aquatic Chemistry EditionNumber3rd ed. John Wiley & Sons Inc. New York, USA

    Google Scholar 

  • O. Totsche R. Pöthig W. Uhlmann H. Büttcher E. W. Steinberg (2003) ArticleTitleBuffering mechanisms in acidic mining lakes – A model-based analyses Aquat. Geochem. 9 343–359 Occurrence Handle10.1023/B:AQUA.0000029035.88090.eb

    Article  Google Scholar 

  • P. L. Verplanck D. K. Nordstrom H. E. Taylor B. A. Kimball (2004) ArticleTitleRare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation Appl. Geochem. 19 1339–1354 Occurrence Handle10.1016/j.apgeochem.2004.01.016

    Article  Google Scholar 

  • Wanty R.B., Miller W.R., Briggs P.H. and McHugh J.B. (1999) Geochemical processes controlling uranium mobility in mine drainages. In The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues (eds. G.S. Plumlee and M.J. Logsdon), Society of Economic Geologists, Rev. Econ. Geol. 6A, 201–213.

  • J. G. Webster P. J. Swedlund K. S. Webster (1998) ArticleTitleTrace metal adsorption onto acid mine drainage Fe(III) oxyhydroxysulphate. Environ Sci. Technol. 32 1361–1368 Occurrence Handle10.1021/es9704390

    Article  Google Scholar 

  • J. Yu B. Heo I. Choi H. Chang (1999) ArticleTitleApparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage Geochim. Cosmochim. Acta 63 3407–3416 Occurrence Handle10.1016/S0016-7037(99)00261-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sánchez España.

Rights and permissions

Reprints and permissions

About this article

Cite this article

España, J.S., Pamo, E.L., Pastor, E.S. et al. The Removal of Dissolved Metals by Hydroxysulphate Precipitates during Oxidation and Neutralization of Acid Mine Waters, Iberian Pyrite Belt. Aquat Geochem 12, 269–298 (2006). https://doi.org/10.1007/s10498-005-6246-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-005-6246-7

Keywords

Navigation