Skip to main content
Log in

Thermodynamic and Kinetic Properties of Natural Brines

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The physical chemistry of natural brines made up of mostly NaCl has been studied over the years. In this article, the work on the thermodynamics and kinetics of processes in NaCl brines will be examined. The importance of ionic interactions of the processes will be stressed. This will include the pressure–volume–temperature and physical–chemical properties of NaCl and other brine salts from 0 to 6 m, 0 to 200°C, and 0 to 1,000 bar applied pressures. Acid–base, gas–liquid, solid–liquid, and ion–complex formation processes in NaCl are examined. Equations that can be used to estimate the equilibria in NaCl are given. Pitzer models are discussed that can be used to estimate ionic equilibria in brines. The oxidation of Fe(II) and Cu(I) with O2 and H2O2 and the reduction of Cu(II) with H2O2 in NaCl are examined in terms of ionic complexes of metals with OH and CO3 2−. The oxidation of H2S with O2 and H2O2 is also examined in NaCl media. Equations are given that can be used to estimate the effect of ionic interactions on kinetic processes in NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Archer DG (1992) Thermodynamic properties of NaCl + H2O system. II. Thermodynamic properties of NaCl(aq), NaCl · 2H2O(cr), and phase equilibria. J Phys Chem Ref Data 21:793–829

    Google Scholar 

  • Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York, 489 pp

  • Barlow AJ, Yazgan E (1967) Pressure dependence of the velocity of sound in water as a function of temperature. Br J Appl Phys 18:645–651. doi:10.1088/0508-3443/18/5/315

    Google Scholar 

  • Boulegue J, Lord CJ III, Church TM (1982) Sulfur speciation and associated trace metals (Fe, Cu) in porewaters of Great Marsh, Delaware. Geochim Cosmochim Acta 46:453–464. doi:10.1016/0016-7037(82)90236-8

    Google Scholar 

  • Bradshaw A, Schleicher KE (1986) An empirical equation of state for pure water in the oceanographic region of temperature and pressure determined from direct measurements. J Chem Eng Data 31:189–194. doi:10.1021/je00044a018

    Google Scholar 

  • Bruland KW (1989) Complexation of zinc by natural organic ligands in the central North Pacific. Limnol Oceanogr 34:269–285

    Google Scholar 

  • Bruland KW (1992) Complexation of cadmium by natural organic ligands in the central North Pacific. Limnol Oceanogr 37:1008–1017

    Google Scholar 

  • Bruland KW, Wells M (1995) The chemistry of iron in seawater and its interactions with phytoplankton. Mar Chem 50:1–241. doi:10.1016/0304-4203(95)90009-8 Special Issue

    Google Scholar 

  • Byrne RH, Kester DR (1976a) A potentiometric study of ferric ion complexes in synthetic media and seawater. Mar Chem 4:275–287. doi:10.1016/0304-4203(76)90013-X

    Google Scholar 

  • Byrne RH, Kester DR (1976b) Solubility of hydrous ferric hydroxide and iron speciation in seawater. Mar Chem 4:255–274. doi:10.1016/0304-4203(76)90012-8

    Google Scholar 

  • Byrne RH, Kester DR (1978) Ultraviolet spectroscopic study of ferric hydroxide complexation. J Solut Chem 7:373–383. doi:10.1007/BF00662897

    Google Scholar 

  • Byrne RH, Kester DR (1981) Ultraviolet spectroscopic study of ferric equilibria at high chloride concentrations. J Solut Chem 10:51–67. doi:10.1007/BF00652780

    Google Scholar 

  • Byrne RH, Luo Y-R (2000) Direct observations of nonintegral hydrous ferric oxide solubility products: K*so = [Fe3+][H+]−2.86. Geochim Cosmochim Acta 64:1873–1877. doi:10.1016/S0016-7037(00)00329-X

    Google Scholar 

  • Byrne RH, Luo Y-R, Young RW (2000) Iron hydrolysis and solubility revisited: observations and comments on iron hydrolysis characterizations. Mar Chem 70:23–35. doi:10.1016/S0304-4203(00)00012-8

    Google Scholar 

  • Byrne RH, Yao W, Luo Y-R, Wang B (2005) The dependence of Fe(III) hydrolysis on ionic strength in NaCl solutions. Mar Chem 97:34–48. doi:10.1016/j.marchem.2004.07.016

    Google Scholar 

  • Capodaglio G, Coale KH, Bruland KW (1990) Lead speciation in surface waters of the Eastern North Pacific. Mar Chem 29:221–233. doi:10.1016/0304-4203(90)90015-5

    Google Scholar 

  • Chen C-T, Millero FJ (1976) Reevaluation of Wilson’s sound-speed measurements for pure water. J Acoust Soc Am 60:1270–1273. doi:10.1121/1.381240

    Google Scholar 

  • Chen C-T, Millero FJ (1981) Equations of state for NaCl, MgCl2, Na2SO4 and MgSO4 aqueous solutions at high pressures. J Chem Eng Data 26:270–274. doi:10.1021/je00025a014

    Google Scholar 

  • Chen C-T, Fine RA, Millero FJ (1977a) The equation of state of pure water determined from sound speeds. J Chem Phys 66:2142–2144. doi:10.1063/1.434179

    Google Scholar 

  • Chen C-T, Emmet RT, Millero FJ (1977b) The apparent molal volumes of aqueous solutions of NaCl, KCl, MgCl2, Na2SO4 and MgSO4 from 0 to 1000 bars at 0, 25, and 50°C. J Chem Eng Data 22:201–207. doi:10.1021/je60073a007

    Google Scholar 

  • Christov C (2001) Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at 298.15 K. Calphad 25:445–454. doi:10.1016/S0364-5916(01)00063-3

    Google Scholar 

  • Christov C (2004) Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na + K + Mg + Cl + SO4 + H2O} system at T = 298.15. J Chem Thermodyn 36:223–235. doi:10.1016/j.jct.2003.11.010

    Google Scholar 

  • Christov C, Møller N (2004) Chemical equilibrium model of solution behavior and solubility in the H-Na-K-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature. Geochim Cosmochim Acta 68:1309. doi:10.1016/j.gca.2003.08.017

    Google Scholar 

  • Christov C, Dickson AG, Møller N (2007) Thermodynamic modeling of aqueous aluminum chemistry and solid-liquid equilibria to high solution concentration and temperature. I. The acidic H-Al-Na-K-Cl-H2O system from 0 to100°C. J Solut Chem 36:1495–1523. doi:10.1007/s10953-007-9191-9

    Google Scholar 

  • Clayton T, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res 40:2115–2129. doi:10.1016/0967-0637(93)90048-8

    Google Scholar 

  • Clegg SL, Whitfield M (1991) Activity coefficients in natural waters. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions. CRC, Boca Raton, pp 279–434 Chapt. 6

    Google Scholar 

  • Clegg SL, Whitfield M (1995) A chemical model of seawater including dissolved ammonia and the stoichiometric dissociation constant of ammonia in estuarine water and seawater from −2 to 40°C. Geochim Cosmochim Acta 59:2403–2421. doi:10.1016/0016-7037(95)00135-2

    Google Scholar 

  • Coale KH, Bruland KW (1988) Copper complexation in the Northeast Pacific. Limnol Oceanogr 33:1084–1101

    Google Scholar 

  • Connaugton LM, Millero FJ (1987) The PVT properties of concentrated aqueous electrolytes. VIII. The volume changes for mixing the major sea salts at I = 3.0 from 5 to 95°C. J Solut Chem 16:491–502. doi:10.1007/BF00648598

    Google Scholar 

  • Connaughton LM, Hershey JP, Millero FJ (1986) PVT properties of concentrated electrolytes. V. The density of NaCl, Na2SO4, MgCl2 and MgSO4 from 0 to 100°C. J Solut Chem 15:989–1002. doi:10.1007/BF00645194

    Google Scholar 

  • Cooper WJ, Zika RG (1983) Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science 220:711–712. doi:10.1126/science.220.4598.711

    Google Scholar 

  • Daniele PG, Rigano C, Sammartano S, Zelano V (1998) Ionic strength dependence of formation constants XVII. The hydrolysis of Ion(III) in aqueous KNO3 solution. Talanta 41:1577–1582. doi:10.1016/0039-9140(94)E0081-2

    Google Scholar 

  • Dedick E, Stade D, Sotolongo S, Hershey JP, Millero FJ (1990) The PVT properties of concentrated aqueous electrolytes. IX. The volume properties of KCl and K2SO4 and their mixtures with NaCl and Na2SO4 as a function of temperature. J Solut Chem 19:353–374. doi:10.1007/BF00648141

    Google Scholar 

  • Del Grosso VA, Mader CW (1972) Speed of sound in pure water. J Acoust Soc Am 52:1442–1446. doi:10.1121/1.1913258

    Google Scholar 

  • Dickson AG, Whitfield M (1981) An ion-association model for estimating acidity constants (at 25°C and 1 atm total pressure) in electrolyte mixtures related to seawater (ionic strength <1 mol Kg−1 H2O). Mar Chem 10:315–333. doi:10.1016/0304-4203(81)90012-8

    Google Scholar 

  • Ellwood MJ, van den Berg CMG (2001) Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry. Mar Chem 75:33–47. doi:10.1016/S0304-4203(01)00024-X

    Google Scholar 

  • Felmy AR, Weare JH (1986) The prediction of borate mineral equilibria in natural waters: application to Searles Lake, California. Geochim Cosmochim Acta 50:2771–2783. doi:10.1016/0016-7037(86)90226-7

    Google Scholar 

  • Fernendez H, Vazquez F, Millero FJ (1982) The density and composition of hypersaline waters of a Mexican Lagoon. Limnol Oceanogr 27:315–321

    Google Scholar 

  • Foti C, Rigano C, Sammartano S (1999) Analysis of thermodynamic data for complex formation: protonation of THAM and fluoride ion at different temperatures and ionic strength. Ann Chim 89:1–12

    Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Harper and Row, New York, 450 pp

  • Gledhill DK, Morse JW (2004) Dissolution kinetics of calcite in NaCl-CaCl2-MgCl2 brines at 25°C and 1 bar pCO2. Aquat Geochem 10:171–190. doi:10.1023/B:AQUA.0000038954.35411.cf

    Google Scholar 

  • Gledhill DK, Morse JW (2006a) Calcite dissolution kinetics in Na-Ca-Mg brines. Geochim Cosmochim Acta 70:5802–5813. doi:10.1016/j.gca.2006.03.024

    Google Scholar 

  • Gledhill DK, Morse JW (2006b) Calcite solubility in Na-Ca-Mg brines. Chem Geol 233:249–256. doi:10.1016/j.chemgeo.2006.03.006

    Google Scholar 

  • Gledhill M, van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in sea water using cathodic stripping voltammetry. Mar Chem 47:41–54. doi:10.1016/0304-4203(94)90012-4

    Google Scholar 

  • Gonzalez-Davila M, Santana-Casiano JM, Millero FJ (2004) Oxidation of iron(II) nanomolar with H2O2 in seawater. Geochim Cosmochim Acta 68:A377

    Google Scholar 

  • González-Davila M, Santana-Casiano JM, Millero FJ (2005) Oxidation of iron (II) nanomolar with H2O2 in seawater. Geochim Cosmochim Acta 69(1):89–93. doi:10.1016/j.gca.2004.05.043

    Article  Google Scholar 

  • González-Davila M, Santana-Casiano JM, Millero FJ (2006) Competition between O2 and H2O2 in the oxidation of Fe(II) in natural waters. J Solut Chem 35:95–111. doi:10.1007/s10953-006-8942-3

    Google Scholar 

  • Greenberg JP, Møller N (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C. Geochim Cosmochim Acta 53:2503–2518. doi:10.1016/0016-7037(89)90124-5

    Google Scholar 

  • Harber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A 149:332–351

    Google Scholar 

  • Harvie CE, Weare JH (1980) The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-SO4-Cl-H2O system from zero to high concentration at 25°C. Geochim Cosmochim Acta 44:981–997. doi:10.1016/0016-7037(80)90287-2

    Google Scholar 

  • Harvie CE, Møller N, Weare JH (1984) The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2–H2O system to high ionic strengths at 25°C. Geochim Cosmochim Acta 48:723–752. doi:10.1016/0016-7037(84)90098-X

    Google Scholar 

  • Harvie CE, Greenberg JP, Weare JH (1987) A chemical equilibrium algorithm for highly non-ideal multiphase systems: free energy minimization. Geochim Cosmochim Acta 51:1045–1057. doi:10.1016/0016-7037(87)90199-2

    Google Scholar 

  • He S, Morse JW (1993) The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90°C. Geochim Cosmochim Acta 57:3533–3554. doi:10.1016/0016-7037(93)90137-L

    Google Scholar 

  • Hering JG, Sunda WG, Ferguson RL, Morel FMM (1987) A field comparison of two methods for the determination of copper complexation: bacterial bioassay and fixed-potential amperometry. Mar Chem 20:299–312. doi:10.1016/0304-4203(87)90064-8

    Google Scholar 

  • Hobart DE, Bruton CJ, Millero FJ, Chou I-M, Trauth KM, Anderson DR (1996) Estimates of the solubilities of waste element radionuclides in waste isolation pilot plant brines: a report by the expert panel on source term, Sandia 96-0098. UC-721, Sandia National Laboratories, Livermore, CA, May 1996, 54 pp

  • Hoffmann MR (1977) Kinetics and mechanism of oxidation of hydrogen sulfide by hydrogen peroxide in acidic solution. Environ Sci Technol 11:61–66. doi:10.1021/es60124a004

    Google Scholar 

  • Hoffmann MR, Lim BC (1979) Kinetics and mechanism of the oxidation of sulfide by oxygen: catalysis by homogeneous metal-phthalocyanine complexes. Environ Sci Technol 13:1406–1414. doi:10.1021/es60159a014

    Google Scholar 

  • Jellison R, Macintyre S, Millero FJ (1999) Density and conductivity properties of Na-CO3-Cl-SO4 brine from Mono Lake, USA. Int J Salt Lake Res 8:41–53. doi:10.1007/BF02442136

    Google Scholar 

  • Jorgensen BB, Fossing H, Wirsen CO, Jannash HW (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Res 38:S1083–S1103

    Google Scholar 

  • Kell GS (1967) Precise representation of volume properties of water at one atmosphere. J Chem Eng Data 12:66–69. doi:10.1021/je60032a018

    Google Scholar 

  • Kell GS (1975) The density, thermal expansivity and compressibility of liquid water from 0 to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on the 1968 temperature scale. J Chem Eng Data 20:97–105. doi:10.1021/je60064a005

    Google Scholar 

  • Kell GS, Whalley E (1965) P-V-T properties of water. Part I. Liquid water at 0 to 150°C and at pressures to 1 kilobar. Philos Trans R Soc A 258:565–614. doi:10.1098/rsta.1965.0051

    Google Scholar 

  • Kell GS, Whalley E (1975) Reanalysis of the density of liquid water in the range of 0 to 150°C and 0 to 1 kilobar. J Chem Phys 62:3496–3503. doi:10.1063/1.430986

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulfur. Philos Trans R Soc Lond B Biol Sci 298:499–528. doi:10.1098/rstb.1982.0094

    Google Scholar 

  • King DW (1998) Role of carbonate speciation on the oxidation rate of Fe(II) in aquatic systems. Environ Sci Technol 32:2997–3003. doi:10.1021/es980206o

    Google Scholar 

  • King DW, Farlow R (2000) Role of carbonate speciation on the oxidation of Fe(II) by H2O2. Mar Chem 70:201–209. doi:10.1016/S0304-4203(00)00026-8

    Google Scholar 

  • King DW, Lounsbury HA, Millero FJ (1995) Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ Sci Technol 29:818–824. doi:10.1021/es00003a033

    Google Scholar 

  • Krumgalz BS, Millero FJ (1982a) Physico-chemical study of the Dead Sea waters. I. Activity coefficients of major ions in Dead Sea water. Mar Chem 11:209–222. doi:10.1016/0304-4203(82)90016-0

    Google Scholar 

  • Krumgalz BS, Millero FJ (1982b) Physico-chemical study of Dead Sea waters. II. Density measurements and equation of state of Dead Sea waters at one atmosphere. Mar Chem 11:477–492. doi:10.1016/0304-4203(82)90012-3

    Google Scholar 

  • Krumgalz BS, Millero FJ (1983) Physico-chemical study of Dead Sea waters. III. On gypsum saturation in Dead Sea waters and their mixtures with Mediterranean sea water. Mar Chem 13:127–139. doi:10.1016/0304-4203(83)90021-X

    Google Scholar 

  • Krumgalz BS, Millero FJ (1989) Halite solubility in Dead Sea waters. Mar Chem 27:219–233. doi:10.1016/0304-4203(89)90049-2

    Google Scholar 

  • Liu X, Millero FJ (1999) The solubility of iron in sodium chloride solutions. Geochim Cosmochim Acta 63:3487–3497. doi:10.1016/S0016-7037(99)00270-7

    Google Scholar 

  • Liu X, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77:43–54. doi:10.1016/S0304-4203(01)00074-3

    Google Scholar 

  • Liu X, Millero FJ, Micic M (2000) Iron hydroxide solubility and morphology as examined by ESEM. Div Environ Chem Prepr Ext Abstr 40:532–534

    Google Scholar 

  • Lo Surdo A, Alzola EM, Millero FJ (1982) The P.V.T. properties of concentrated aqueous electrolytes. I. Densities and apparent molar volumes of NaCl, Na2SO4, MgCl2 and MgSO4 solutions from 0.1 mol. Kg−1 to saturation and from 273.15 to 323.15 K. J Chem Thermodyn 14:649–662. doi:10.1016/0021-9614(82)90080-5

    Google Scholar 

  • Marion GM (2001) Carbonate mineral solubility at low temperature in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2–H2O system. Geochim Cosmochim Acta 65:1896–2001. doi:10.1016/S0016-7037(00)00588-3

    Google Scholar 

  • Marion GM, Farren RE (1999) Mineral solubility in theNa-K-Mg-Ca-Cl-SO4-H2O system: a re-evaluation of the sulfate chemistry of Spencer–Møller–Weare model. Geochim Cosmochim Acta 63:1305–1318. doi:10.1016/S0016-7037(99)00102-7

    Google Scholar 

  • Millero FJ (1982) Use of models to determine ionic interactions in natural waters. Thalass Jugosl 18:253–291

    Google Scholar 

  • Millero FJ (1983) The P-V-T properties of brines. In: Proceedings of the first international symposium on hydrothermal reactions, Japan, 1983. Gakujutsu Bunken Fukyu-Kai (Association for Science Documents Information), pp 111–122

  • Millero FJ (1985) The effect of ionic interactions on the oxidation of metals in natural waters. Geochim Cosmochim Acta 49:547–553. doi:10.1016/0016-7037(85)90046-8

    Google Scholar 

  • Millero FJ (1986) The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Mar Chem 18:121–147. doi:10.1016/0304-4203(86)90003-4

    Google Scholar 

  • Millero FJ (1989) Effect of ionic interactions on the oxidation of Fe(II) and Cu(I) in natural waters. Mar Chem 28:1–18. doi:10.1016/0304-4203(89)90183-7

    Google Scholar 

  • Millero FJ (1990a) Effect of ionic interactions on the oxidation rates of metals in natural waters. In: Melchior DC, Bassett RL (eds) Chemical modeling in aqueous systems II, Chap 34. ACS Press, Washington, DC, pp 447–460

  • Millero FJ (1990b) Effect of speciation on the rates of oxidation of metals. In: Patterson JW, Passino R (eds) Metals speciation, separation and recovery, vol 2. Lewis Publishers, Inc., Chelsea, Michigan, pp 125–141

    Google Scholar 

  • Millero FJ (1991a) The oxidation of H2S in Black Sea waters. Deep-Sea Res 38:S1139–S1150

    Google Scholar 

  • Millero FJ (1991b) The oxidation of H2S in Framvaren Fjord. Limnol Oceanogr 36:1007–1014

    Google Scholar 

  • Millero FJ (1991c) The oxidation of H2S in Chesapeake Bay. Estuar Coast Shelf Sci 33:521–527

    Google Scholar 

  • Millero FJ (1992) The stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim Cosmochim Acta 56:3123–3132. doi:10.1016/0016-7037(92)90293-R

    Google Scholar 

  • Millero FJ (2000) The activity coefficients of non-electrolytes in seawater. Mar Chem 70:5–22. doi:10.1016/S0304-4203(00)00011-6

    Google Scholar 

  • Millero FJ (2001a) The speciation of metals in natural waters. Geochem Trans 8

  • Millero FJ (2001b) Physical chemistry of natural waters. Wiley-Interscience, NY, 654 pp

  • Millero FJ (2006) Chemical oceanography, 3rd edn. CRC Press, Boca Raton, 496 pp

  • Millero FJ, Izaguirre M (1989) Effect of ionic strength and ionic interactions on the oxidation of Fe(II). J Solut Chem 18:585–599. doi:10.1007/BF00664239

    Google Scholar 

  • Millero FJ, Hawke DH (1992) Ionic interactions of divalent metals in natural waters. Mar Chem 40:19–48. doi:10.1016/0304-4203(92)90046-D

    Google Scholar 

  • Millero FJ, Hershey JP (1989) Thermodynamics and kinetics of hydrogen sulfide in natural waters. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. ACS Symposium Series 393, American Chemical Society, Washington, DC, pp 282–313

  • Millero FJ, Roy R (1997) A chemical model for the carbonate system in natural waters. Croat Chem Acta 70:1–38

    Google Scholar 

  • Millero FJ, Pierrot D (1998) A chemical model for natural waters. Aquat Geochem 4:153–199. doi:10.1023/A:1009656023546

    Google Scholar 

  • Millero FJ, Pierrot D (2005) The thermochemical properties of seawater fit to the Pitzer equations. Mar Chem 94:81–99. doi:10.1016/j.marchem.2004.07.011

    Google Scholar 

  • Millero FJ, Pierrot D (2007) The activity coefficients of Fe(III) complexes with hydroxide in NaCl and NaClO4 solutions. Geochim Cosmochim Acta 71:4825–4833. doi:10.1016/j.gca.2007.08.005

    Google Scholar 

  • Millero FJ, Poisson A (1981) International one-atmosphere equation of state of seawater. Deep-Sea Res 28:625–629. doi:10.1016/0198-0149(81)90122-9

    Google Scholar 

  • Millero FJ, Schreiber DR (1982) Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Am J Sci 282:1508–1540

    Google Scholar 

  • Millero FJ, Sotolongo S (1989) The oxidation of Fe(II) with H2O2 in seawater. Geochim Cosmochim Acta 53:1867–1873. doi:10.1016/0016-7037(89)90307-4

    Google Scholar 

  • Millero FJ, Lo Surdo A, Chetirkin PV, Guinasso NL (1979) The density and speed of sound of Orca Basin waters. Limnol Oceanogr 24:218–225

    Article  Google Scholar 

  • Millero FJ, Chen C-T, Bradshaw A, Schleicher K (1980) A new high pressure equation of state for seawater. Deep-Sea Res 27:255–264. doi:10.1016/0198-0149(80)90016-3

    Google Scholar 

  • Millero FJ, Mucci A, Zullig J, Chetirkin P (1982) The density of Red Sea brines. Mar Chem 11:463–475. doi:10.1016/0304-4203(82)90011-1

    Google Scholar 

  • Millero FJ, Hershey JP, Fernandez M (1987a) The pK* of TRISH+ in Na-K-Mg-Ca-Cl-SO4 brines—pH scales. Geochim Cosmochim Acta 51:707–711. doi:10.1016/0016-7037(87)90081-0

    Google Scholar 

  • Millero FJ, Sotolongo S, Izaguirre M (1987b) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801. doi:10.1016/0016-7037(87)90093-7

    Google Scholar 

  • Millero FJ, Hubinger S, Fernandez M, Garnett S (1987c) The oxidation of H2S in seawater as a function of temperature, pH and ionic strength. Environ Sci Technol 21:439–443. doi:10.1021/es00159a003

    Google Scholar 

  • Millero FJ, Plese T, Fernandez M (1988) The dissociation of hydrogen sulfide in seawater. Limnol Oceanogr 33:269–274

    Google Scholar 

  • Millero FJ, Laferriere AL, Fernandez M, Hubinger S, Hershey JP (1989) Oxidation of H2S with H2O2 in natural waters. Environ Sci Technol 23:209–213. doi:10.1021/es00179a012

    Google Scholar 

  • Millero FJ, Izaguirre M, Sharma VK (1990) The effect of ionic interactions on the rates of oxidation in natural waters. Mar Chem 22:179–191. doi:10.1016/0304-4203(87)90007-7

    Google Scholar 

  • Millero FJ, Sharma VK, Karn B (1991a) The rate of reduction of Cu(II) with hydrogen peroxide in seawater. Mar Chem 36:71–83. doi:10.1016/0304-4203(91)90058-5

    Google Scholar 

  • Millero FJ, Stade DJ, Sotolongo S, Vega C (1991b) The effect of ionic interactions on the oxidation of Fe(II) with H2O2. J Solut Chem 20:1079–1092. doi:10.1007/BF00649098

    Google Scholar 

  • Millero FJ, Johnson R, Vega C, Sharma VK, Sotolongo S (1992) The effect of ionic interactions on the rates of reduction of Cu(II) with H2O2 in aqueous solutions. J Solut Chem 21:1271–1287. doi:10.1007/BF00667222

    Google Scholar 

  • Millero FJ, Yao W, Aicher J (1995a) The speciation of Fe(II) and Fe(III) in natural waters. Mar Chem 50:21–39. doi:10.1016/0304-4203(95)00024-L

    Google Scholar 

  • Millero FJ, Gonzalez-Davila M, Santana-Casiano M (1995b) The reduction of Fe(III) with sulfite in natural waters. J Geophys Res 100:7235–7244. doi:10.1029/94JD03111

    Google Scholar 

  • Millero FJ, Huang F, Laferriere AL (2002a) The solubility of oxygen in the major sea salts and their mixtures. Geochim Cosmochim Acta 66(13):2349–2359. doi:10.1016/S0016-7037(02)00838-4

    Google Scholar 

  • Millero FJ, Huang F, Laferriere AL (2002b) Solubility of oxygen in the major sea salts as a function of temperature and concentration. Mar Chem 78(4):217–230. doi:10.1016/S0304-4203(02)00034-8

    Google Scholar 

  • Millero FJ, Huang F, Graham TB (2003) Solubility of oxygen in some 1-1, 2-1, 1-2, and 2-2 electrolytes as a function of concentration at 25°C. J Solut Chem 32(6):473–487. doi:10.1023/A:1025301314462

    Google Scholar 

  • Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2007) Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem 100:80–94. doi:10.1016/j.marchem.2005.12.001

    Google Scholar 

  • Millero FJ, Suarez AF, Lando G (2008) Spectroscopic measurements of pH for NaCl brines from I = 0.1 to 6 m. Aquat Geochem (in preparation)

  • Moffett JW, Zika RG (1987) Solvent extraction of copper acetylacetonate in studies of copper(II) speciation in seawater. Mar Chem 21:301–313. doi:10.1016/0304-4203(87)90053-3

    Google Scholar 

  • Møller N (1988) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration. Geochim Cosmochim Acta 52:821–837. doi:10.1016/0016-7037(88)90354-7

    Google Scholar 

  • Møller N, Greenberg J, Weare JH (1998) Computer modeling for geothermal systems: prediction carbonate and silica scale formation, CO2 breakout and H2S exchange. Transp Porous Media 33:173–204. doi:10.1023/A:1006501927827

    Google Scholar 

  • Nordstrom DK, Ball JW (1984) Chemical models, computer programs and metal complexation in natural water. In: Kramer CJM, Duinker JC (eds) Complexation of trace metals in natural waters. Martinus Nijhoff/W. Junk, The Hague, pp 149–162

    Google Scholar 

  • Pabalan RT, Pitzer K (1987) Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperature for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O. Geochim Cosmochim Acta 51:2429–2443. doi:10.1016/0016-7037(87)90295-X

    Google Scholar 

  • Patterson CS, Slocum GH, Busey RH, Mesmer RE (1982) Carbonate equilibria in hydrothermal systems: first ionization of carbonic acid in NaCl media to 300°C. Geochim Cosmochim Acta 46:1653–1663. doi:10.1016/0016-7037(82)90320-9

    Google Scholar 

  • Patterson CS, Busey RH, Mesmer RE (1984) Second ionization of carbonic acid in NaCl media to 250°C. J Solut Chem 13:647–661. doi:10.1007/BF00650372

    Google Scholar 

  • Pierrot D, Millero FJ (2000) The apparent molal volume and compressibility of seawater fit to the Pitzer equations. J Solut Chem 29:719–742. doi:10.1023/A:1005164911283

    Google Scholar 

  • Pitzer KS (1979) Theory: ion interaction approach. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions, vol I. CRC Press, Boca Raton, pp 157–208

    Google Scholar 

  • Pitzer KS (1991) Ion interaction approach: theory and data collection. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions, vol I, 2nd edn. CRC, Boca Raton, pp 75–153

    Google Scholar 

  • Pitzer KS, Peiper JC, Busey RH (1984) Thermodynamic properties of aqueous sodium chloride solutions. J Phys Chem Ref Data 13:1–102

    Google Scholar 

  • Plummer LN, Parkhurst DS, Fleming GW, Dunkle SA (1988) A computer program incorporating Pitzer’s equations for calculation of geochemical reactions in Brines. U.S. Geological Survey, Water-Resources Investigations report 88-4153, Reston

  • Preston-Thomas H (1990) The international temperature scale of 1990 (ITS-90). Metrologia 27:107. doi:10.1088/0026-1394/27/2/010

    Google Scholar 

  • Rogers PSZ, Pitzer KS (1982) Volumetric properties of aqueous sodium chloride solutions. J Phys Chem Ref Data 11:15–81

    Article  Google Scholar 

  • Rose AL, Waite TD (2002) Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter. Environ Sci Technol 36:433–444. doi:10.1021/es0109242

    Google Scholar 

  • Rose AL, Waite TD (2003) Effect of dissolved natural organic matter on the kinetics of ferrous iron oxygenation in seawater. Environ Sci Technol 37:4877–4886. doi:10.1021/es034152g

    Google Scholar 

  • Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138. doi:10.1016/0304-4203(95)00031-L

    Google Scholar 

  • Saito MA, Moffet JW (2001) Complexation of cobalt by natural organic ligands in Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work. Mar Chem 75:49–68. doi:10.1016/S0304-4203(01)00025-1

    Google Scholar 

  • Santana-Casiano JM, Gonzalez-Davila M, Rodriquez MJ, Millero FJ (2000) The effects of organic compounds in the oxidation kinetics of Fe(II). Mar Chem 70:211–222. doi:10.1016/S0304-4203(00)00027-X

    Google Scholar 

  • Santana-Casiano JM, Gonzalez-Davila M, Millero FJ (2004) The oxidation of Fe(II) in NaCl-HCO3 and seawater solutions in the presence of phthalate and salicylate ions: a kinetic model. Mar Chem 85:27–40. doi:10.1016/j.marchem.2003.09.001

    Google Scholar 

  • Santana-Casiano JM, Gonzalez-Davila M, Rodriquez MJ, Millero FJ (2005) Oxidation of nanomolar levels of iron(II) with oxygen in seawater. Environ Sci Technol 39:2073–2079. doi:10.1021/es049748y

    Google Scholar 

  • Santana-Casiano JM González-Dávila M, Millero FJ (2006) The role of Fe(II) species on the oxidation of Fe(II) in natural waters in the presence of O2 and H2O2. Mar Chem 99:70–82. doi:10.1016/j.marchem.2005.03.010

    Google Scholar 

  • Sharma VK, Millero FJ (1988a) Oxidation of copper(I) in seawater. Environ Sci Technol 22:768–771. doi:10.1021/es00172a004

    Google Scholar 

  • Sharma VK, Millero FJ (1988b) The oxidation of Cu(I) in electrolyte solution. J Solut Chem 17:581–599. doi:10.1007/BF00651464

    Google Scholar 

  • Sharma VK, Millero FJ (1988c) Effect of ionic interactions on the rates of oxidation of Cu(I) with O2 in natural waters. Mar Chem 25:141–161. doi:10.1016/0304-4203(88)90061-8

    Google Scholar 

  • Sharma VK, Millero FJ (1988d) Determining the stability constant of copper(I) halide complexes from kinetic measurements. Inorg Chem 27:3256–3259. doi:10.1021/ic00291a049

    Google Scholar 

  • Sharma VK, Millero FJ (1989) The oxidation of Cu(I) with H2O2 in natural waters. Geochim Cosmochim Acta 53:2269–2276. doi:10.1016/0016-7037(89)90349-9

    Google Scholar 

  • Sillen LG, Martell AE (1964) Stability constants of metal-ion complexes. Special publication no. 17, The Chemical Society, Burlington House, London, 754 pp

  • Spencer RJ, Møller N, Weare JH (1990) The prediction of mineral solubilities in natural waters; a chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25°C. Geochim Cosmochim Acta 54:575–590. doi:10.1016/0016-7037(90)90354-N

    Google Scholar 

  • Spieweck F, Bettin H (1992) Review: solid and liquid density determination. Tech Mess 59:285–292

    Google Scholar 

  • Stumm W, Lee GF (1961) Oxygenation of ferrous iron. Ind Eng Chem 53:143–146

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley-Interscience, New York, 1022 pp

  • Sunda WG, Hanson AK (1987) Measurement of free cupric ion concentration in seawater by a ligand competition technique involving copper sorption onto C18 SEP-PAK cartridges. Limnol Oceanogr 32:537–551

    Google Scholar 

  • Sung W, Morgan JJ (1980) Kinetics and product of ferrous oxygenation in aqueous solutions. Environ Sci Technol 14:561–568

    Google Scholar 

  • Trapp JM, Millero FJ (2007) The oxidation of nana molar Fe(II) with O2 in brines. J Solut Chem 36:1479–1493

    Google Scholar 

  • Turner DR, Whitfield M, Dickson AG (1981) The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure. Geochim Cosmochim Acta 45:855–881

    Google Scholar 

  • Van den Berg CMG (1982) Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2. II. Experimental procedures and application to surface seawater. Mar Chem 11:323–342

    Google Scholar 

  • Van den Berg CMG (1984) Determination of the complexing capacity and conditional stability constants of complexes of copper(II) with natural organic ligands in seawater by cathodic stripping voltammetry of copper-catechol complexions. Mar Chem 15:1268–1274

    Google Scholar 

  • Van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139–157

    Google Scholar 

  • Van den Berg CMG, Nimmo M (1986) Speciation of nickel in seawater. Sci Total Environ 60:185

    Google Scholar 

  • Vazquez F, Zhang J-Z, Millero FJ (1989) Effect of trace metals on the oxidation rates of H2S in seawater. Geophys Res Lett 16:1363–1366

    Google Scholar 

  • Wagner W, Pruss A (2002) The IAPWS formulation of 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535

    Google Scholar 

  • Weare JH (1987) Models of mineral solubility in concentrated brines with application to field observations. In: Carmichael ISE, Eugster HP (eds) Thermodynamic modeling of geological material: minerals, fluids and melts, vol 17. Mineralogical Society of America, pp 143–174

  • Westall JC, Zachary JL, Morel FMM (1976) MINEQL: a computer program for the calculation of chemical equilibrium composition of aqueous systems. Technical note no. 18, School of Engineering, Massachusetts Institute of Technology, p 91

  • Wilson WD (1959) The speed of sound in distilled water as a function of temperature and pressure. J Acoust Soc Am 31:1067–1072

    Google Scholar 

  • Whitfield M (1975a) An improved specific interaction model for seawater at 25°C and one atmosphere total pressure. Mar Chem 3:197–213

    Google Scholar 

  • Whitfield M (1975b) The extension of chemical models for seawater to include trace components. Geochim Cosmochim Acta 39:1545–1557

    Google Scholar 

  • Whitfield M (1979) Activity coefficients in natural waters. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions, vol II. CRC, Boca Raton, FL, pp 153–299

    Google Scholar 

  • Wu J, Luther GW (1995) Complexation of Fe(III) by natural organic ligands in the North west Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Limnol Oceanogr 50:1119–1177

    Google Scholar 

  • Yao W, Millero FJ (1993) The rate of sulfide oxidation by δMnO2 in seawater. Geochim Cosmochim Acta 57:3359–3365

    Google Scholar 

  • Yao W, Millero FJ (1995a) The chemistry of the anoxic waters in the Framvaren Fjord, Norway. Aquat Geochem 1:53–88

    Google Scholar 

  • Yao W, Millero FJ (1995b) Oxidation of hydrogen sulfide by Mn(IV) and Fe(III) (hydr)oxides in seawater. In: Vairavamurthy MA, Schooner MAA (eds) Geochemical transformation of sedimentary sulfur. ACS Symposium Series 612, American Chemical Society, Washington, DC, Chap 14, pp 260–279.

  • Yao W, Millero FJ (1996) Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Mar Chem 52:1–16

    Google Scholar 

  • Zhang J-Z, Millero FJ (1991) The rate of sulfite oxidation in seawater. Geochim Cosmochim Acta 55:677–685

    Google Scholar 

  • Zhang J-Z, Millero FJ (1993a) The products from the oxidation of H2S in seawater. Geochim Cosmochim Acta 57:1705–1718

    Google Scholar 

  • Zhang J-Z, Millero FJ (1993b) The chemistry of anoxic waters in the Cariaco Trench. Deep-Sea Res 40:1023–1041

    Google Scholar 

  • Zhang J-Z, Whitfield M (1986) Kinetics of inorganic redox reactions in seawater. I. The reduction of iodate by bisulfide. Mar Chem 19:121–137

    Google Scholar 

  • Zhang H, van den Berg CMG, Wollast R (1990) The determination of interactions of cobalt(II) with organic compounds in seawater using cathodic stripping voltammetry. Mar Chem 28:285–300

    Google Scholar 

  • Zika RG (1981) Marine organic photochemistry. In: Duursma EK, Dawson R (eds) Marine organic chemistry. Elsevier Publishers, Amsterdam, pp 299–325

    Google Scholar 

  • Zika RG, Moffett JW, Cooper WJ, Petasne RG, Saltzman ES (1985a) Special and temporal variations of hydrogen peroxide in Gulf of Mexico waters. Geochim Cosmochim Acta 49:1173–1184

    Google Scholar 

  • Zika RG, Saltzman E, Cooper WJ (1985b) Hydrogen peroxide concentrations in the Peru upwelling area. Mar Chem 17:265–275

    Google Scholar 

  • Zuo Y, Hoigné J (1993) Evidence for photochemical formation of H2O2 and oxidation of SO2 in authentic fog water. Science 260:71–73

    Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge the support of the Oceanographic Section of the National Science Foundation for supporting his studies on the Physical Chemistry of Natural Waters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Millero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millero, F.J. Thermodynamic and Kinetic Properties of Natural Brines. Aquat Geochem 15, 7–41 (2009). https://doi.org/10.1007/s10498-008-9053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-008-9053-0

Keywords

Navigation