Skip to main content
Log in

A comparative analysis of star identification algorithms

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This paper aims to examine different star identification algorithms in star sensors and compare the previous algorithms with the newly proposed algorithms. The star identification algorithms in this paper include three geometric methods, which require a minimum of five stars in the sensor field of view. These algorithms are compared with the angle, combined triangle, and pyramid algorithms in terms of speed, accuracy, storage capacity, and resistance to false stars using MATLAB software. Except for the angle algorithm, all the other star identification algorithms have high precision and resistance to false stars. In addition, they have a lower speed than those of the algorithms that use fewer stars to form the pattern. Considering the number of stars required for the algorithm, the newly proposed star identification algorithms are suitable for the second generation of star sensors, which have a larger field of view. The simulations are related to the stars brighter than magnitude 4, as well as a star sensor with a square-shaped field of view with a dimension of \(13.8^{\circ }\times 13.8^{\circ }\), similar to the ASTRO 15 sensor manufactured by Jena-Optronik GmbH company.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Cole, C.L., Crassidis, J.: Fast star-pattern recognition using planar triangles. J. Guid. Control Dyn. 29(1), 64 (2006)

    Article  ADS  Google Scholar 

  • Diaz, K.D.: Performance Analysis of Fixed Point Star Tracker Algorithm for Use Onboard a Picosatellite. Master of Science Thesis, California Polytechnic State University, San Luis Obispo, California, United States (2006)

  • Ghasemi, R.: Distributed Fuzzy adaptive consensus states tracking controller for a class of nonlinear non-affine multi-agent systems with dynamic uncertainties. Int. J. Knowl. Based Intell. Eng. Syst. 22(2), 97–107 (2018)

    Article  Google Scholar 

  • Hong, J., Dickerson, J.A.: Neural-network-based autonomous star identification algorithm. J. Guid. Control Dyn. 23(4), 728–735 (2000)

    Article  ADS  Google Scholar 

  • Huffman, K., Sedwick, R., Stafford, J., Peverill, J., Seng, W.: In: Designing Star Trackers to Meet Micro-Satellite Requirements, SpaceOps 2006 Conference, Rome, Italy (2006)

    Chapter  Google Scholar 

  • Izadmehr, M., Khakian Ghomi, M.: Design and construction of a portable high resolution positioner using star patterns. Astrophys. Space Sci. 364(5), 75 (2019)

    Article  ADS  Google Scholar 

  • Karimi, H., Ghasemi, R., Mohammadi, F.: Adaptive neural observer-based nonsingular terminal sliding mode controller design for a class of nonlinear systems. In: Proceeding of the 6th International Conference on Control, Instrumentation, and Automation (ICCIA 2019), Kordestan, Iran (2019)

    Google Scholar 

  • Kolomenkin, M., Pollak, S., Shimshoni, I., Lindenbaum, M.: Geometric voting algorithm for star trackers. IEEE Trans. Aerosp. Electron. Syst. 44(2), 10090751 (2008)

    Article  Google Scholar 

  • Liebe, C.C.: Pattern recognition of star constellations for spacecraft applications. IEEE Aerosp. Electron. Syst. Mag. 8(1), 4389673 (1993)

    Article  Google Scholar 

  • Mehdipour, C., Mohammadi, F., Mehdipour, I.: Analytical approach to nonlinear behavior study of an electric vehicle. In: Proceeding of the 6th International Conference on Control, Instrumentation, and Automation (ICCIA 2019), Kordestan, Iran (2019)

    Google Scholar 

  • Mohammadi, F., Zheng, C.: A precise SVM classification model for predictions with missing data. In: Proceeding of the 4th National Conference on Applied Research in Electrical, Mechanical Computer and IT Engineering, Tehran, Iran (2018)

    Google Scholar 

  • Mohammadi, F., Nazri, G.-A., Saif, M.: A fast fault detection and identification approach in power distribution systems. In: Proceeding of the 5th International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET 2019), Istanbul, Turkey (2019)

    Google Scholar 

  • Mortari, D.: A fast on-board autonomous attitude determination system based on a new star-ID technique for a wide FOV star tracker. In: Proceeding of the 6th Annual AAS/AIAA Space Flight Mechanics Meeting (1996)

    Google Scholar 

  • Mortari, D., Rogers, J.: A k-vector approach to sampling, interpolation, and approximation. J. Astronaut. Sci. 60(3–4), 686–706 (2013)

    Article  ADS  Google Scholar 

  • Mortari, D., Samaan, M.A., Bruccoleri, C., Junkins, J.L.: The pyramid star identification technique. Navigation 51(3), 171–183 (2004)

    Article  Google Scholar 

  • Padgett, C., Kreutz-Delgado, K.: A grid algorithm for autonomous star identification. IEEE Trans. Aerosp. Electron. Syst. 33(1), 5503990 (1997)

    Article  Google Scholar 

  • Quine, B.M., Durrant-Whyte, H.F.: A fast autonomous star-acquisition algorithm for spacecraft. Control Eng. Pract. 4(12), 1735–1740 (1996)

    Article  Google Scholar 

  • Rahimi Khoygani, M.R., Ghasemi, R.: Neural estimation using a stable discrete-time MLP observer for a class of discrete-time uncertain MIMO nonlinear systems. Nonlinear Dyn. 84(4), 2517–2533 (2016)

    Article  MathSciNet  Google Scholar 

  • Sasaki, T., Kosaka, M.: A star identification method for satellite attitude determination using star sensors. In: International Symposium on Space Technology and Science (1986)

    Google Scholar 

  • Sharafian, A., Ghasemi, R.: A novel terminal sliding mode observer with RBF neural network for a class of nonlinear systems. Int. J. Syst. Control Commun. 9(4), 369–385 (2018)

    Article  Google Scholar 

  • Spratling, B.B. IV, Mortari, D.: A survey on star identification algorithms. Algorithms 2(1), 93–107 (2009)

    Article  Google Scholar 

  • Svartveit, K.: Attitude Determination of the NCUBE Satellite. Master Thesis, Department of Engineering Cybernetics, Norges Teknisk-Naturvitenskapelige Universitet (NTNU), Trondheim, Ålesund, Gjøvik, Norway (2003)

  • Tavoosi, J., Mohammadi, F.: A 3-PRS parallel robot control based on fuzzy-PID controller. In: Proceeding of the 6th International Conference on Control, Instrumentation, and Automation (ICCIA 2019), Kordestan, Iran (2019a)

    Google Scholar 

  • Tavoosi, J., Mohammadi, F.: A new type-II fuzzy system for flexible-joint robot arm control. In: Proceeding of the 6th International Conference on Control, Instrumentation, and Automation (ICCIA 2019), Kordestan, Iran (2019b)

    Google Scholar 

  • Tavoosi, J., Mohammadi, F.: Design a new intelligent control for a class of nonlinear systems. In: Proceeding of the 6th International Conference on Control, Instrumentation, and Automation (ICCIA 2019), Kordestan, Iran (2019c)

    Google Scholar 

  • Toloei, A., Shayan Arani, M., Abaszadeh, M.: A new composite algorithm for identifying the stars in the star tracker. Int. J. Comput. Appl. 102(2), 28–33 (2014)

    Google Scholar 

  • Zhang, G., Wei, X., Jiang, J.: Full-sky autonomous star identification based on radial and cyclic features of star pattern. Image Vis. Comput. 26(7), 891–897 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazel Mohammadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toloei, A., Zahednamazi, M., Ghasemi, R. et al. A comparative analysis of star identification algorithms. Astrophys Space Sci 365, 63 (2020). https://doi.org/10.1007/s10509-020-03775-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03775-9

Keywords

Navigation