Skip to main content
Erschienen in: Autonomous Robots 4/2014

01.04.2014

Stable grasping under pose uncertainty using tactile feedback

verfasst von: Hao Dang, Peter K. Allen

Erschienen in: Autonomous Robots | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with the problem of stable grasping under pose uncertainty. Our method utilizes tactile sensing data to estimate grasp stability and make necessary hand adjustments after an initial grasp is established. We first discuss a learning approach to estimating grasp stability based on tactile sensing data. This estimator can be used as an indicator to the stability of the current grasp during a grasping procedure. We then present a tactile experience based hand adjustment algorithm to synthesize a hand adjustment and optimize the hand pose to achieve a stable grasp. Experiments show that our method improves the grasping performance under pose uncertainty.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Usually, a robot hand contains several DOFs, but we only want to control a subset of these DOFs during a hand adjustment procedure. For example, for the Barrett hand, we would only like to control its spread angle during a hand adjustment procedure. The DOFs of finger flexion will be controlled during hand closing.
 
Literatur
Zurück zum Zitat Bekiroglu, Y., Laaksonen, J., Jorgensen, J. A., Kyrki, V., & Kragic, D. (2011). Assessing grasp stability based on learning and haptic data. IEEE Transactions on Robotics, 27(3), 616–629. doi:10.1109/TRO.2011.2132870.CrossRef Bekiroglu, Y., Laaksonen, J., Jorgensen, J. A., Kyrki, V., & Kragic, D. (2011). Assessing grasp stability based on learning and haptic data. IEEE Transactions on Robotics, 27(3), 616–629. doi:10.​1109/​TRO.​2011.​2132870.CrossRef
Zurück zum Zitat Berenson, D., & Srinivasa, S. (2008). Grasp synthesis in cluttered environments for dexterous hands. In IEEE-RAS International Conference on Humanoid Robots (Humanoids08). Berenson, D., & Srinivasa, S. (2008). Grasp synthesis in cluttered environments for dexterous hands. In IEEE-RAS International Conference on Humanoid Robots (Humanoids08).
Zurück zum Zitat Berenson, D., Srinivasa, S., Kuffner, J. (2009). Addressing pose uncertainty in manipulation planning using task space regions. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009). Berenson, D., Srinivasa, S., Kuffner, J. (2009). Addressing pose uncertainty in manipulation planning using task space regions. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009).
Zurück zum Zitat Bierbaum, A., & Rambow, M., (2009). Grasp affordances from multi-fingered tactile exploration using dynamic potential fields. In Humanoid Robots 2009, Humanoids 2009 (pp. 168–174). doi:10.1109/ICHR.2009.5379581. Bierbaum, A., & Rambow, M., (2009). Grasp affordances from multi-fingered tactile exploration using dynamic potential fields. In Humanoid Robots 2009, Humanoids 2009 (pp. 168–174). doi:10.​1109/​ICHR.​2009.​5379581.
Zurück zum Zitat Boularias, A., Kroemer, O., & Peters, J. (2011). Learning robot grasping from 3-d images with markov random fields. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2011 (pp 1548–1553). Boularias, A., Kroemer, O., & Peters, J. (2011). Learning robot grasping from 3-d images with markov random fields. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2011 (pp 1548–1553).
Zurück zum Zitat Brook, P., Ciocarlie, M., & Hsiao, K. (2011). Collaborative grasp planning with multiple object representations. In IEEE International Conference on Robotics and Automation (ICRA) 2011. (pp 2851–2858). doi:10.1109/ICRA.2011.5980490. Brook, P., Ciocarlie, M., & Hsiao, K. (2011). Collaborative grasp planning with multiple object representations. In IEEE International Conference on Robotics and Automation (ICRA) 2011. (pp 2851–2858). doi:10.​1109/​ICRA.​2011.​5980490.
Zurück zum Zitat Ciocarlie, M., Goldfeder, C., & Allen, P. (2007a). Dimensionality reduction for hand-independent dexterous robotic grasping. In IEEE/RSJ International Conference on Intelligent Robots and Systems (2007), IROS 2007 (pp. 3270–3275). doi:10.1109/IROS.2007.4399227. Ciocarlie, M., Goldfeder, C., & Allen, P. (2007a). Dimensionality reduction for hand-independent dexterous robotic grasping. In IEEE/RSJ International Conference on Intelligent Robots and Systems (2007), IROS 2007 (pp. 3270–3275). doi:10.​1109/​IROS.​2007.​4399227.
Zurück zum Zitat Ciocarlie, M., Lackner, C., & Allen, P. (2007b). Soft finger model with adaptive contact geometry for grasping and manipulation tasks. World Haptics Conference (pp. 219–224). Ciocarlie, M., Lackner, C., & Allen, P. (2007b). Soft finger model with adaptive contact geometry for grasping and manipulation tasks. World Haptics Conference (pp. 219–224).
Zurück zum Zitat Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28(7), 851–867.CrossRef Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28(7), 851–867.CrossRef
Zurück zum Zitat Coelho, J. A., & Grupen, R. A. (1997). A control basis for learning multifingered grasps. Journal of Robotic Systems, 14(7), 545–557.CrossRefMATH Coelho, J. A., & Grupen, R. A. (1997). A control basis for learning multifingered grasps. Journal of Robotic Systems, 14(7), 545–557.CrossRefMATH
Zurück zum Zitat Dang, H., Weisz, J., & Allen, P.K. (2011). Blind grasping: Stable robotic grasping using tactile feedback and hand kinematics. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 5917–5922) doi:10.1109/ICRA.2011.5979679. Dang, H., Weisz, J., & Allen, P.K. (2011). Blind grasping: Stable robotic grasping using tactile feedback and hand kinematics. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 5917–5922) doi:10.​1109/​ICRA.​2011.​5979679.
Zurück zum Zitat Detry, R., Ek, C., Madry, M., Piater, J., & Kragic, D. (2012). Generalizing grasps across partly similar objects. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 3791–3797). doi:10.1109/ICRA.2012.6224992. Detry, R., Ek, C., Madry, M., Piater, J., & Kragic, D. (2012). Generalizing grasps across partly similar objects. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 3791–3797). doi:10.​1109/​ICRA.​2012.​6224992.
Zurück zum Zitat Diankov, R., & Kuffner, J. (2008). Openrave: A planning architecture for autonomous robotics. Robotics Institute, Pittsburgh, PA, Technical, Report CMU-RI-TR-08-34. Diankov, R., & Kuffner, J. (2008). Openrave: A planning architecture for autonomous robotics. Robotics Institute, Pittsburgh, PA, Technical, Report CMU-RI-TR-08-34.
Zurück zum Zitat Dogar, M., & Srinivasa, S. (2011). A framework for push-grasping in clutter. In N. R. Hugh Durrant-Whyte & P. Abbeel (Eds.), Robotics: Science and Systems VII. Cambridge, MA: MIT Press. Dogar, M., & Srinivasa, S. (2011). A framework for push-grasping in clutter. In N. R. Hugh Durrant-Whyte & P. Abbeel (Eds.), Robotics: Science and Systems VII. Cambridge, MA: MIT Press.
Zurück zum Zitat El-Khoury, S., & Sahbani, A. (2010). A new strategy combining empirical and analytical approaches for grasping unknown 3d objects. Robotics and Autonomous Systems, 58, 497–507.CrossRef El-Khoury, S., & Sahbani, A. (2010). A new strategy combining empirical and analytical approaches for grasping unknown 3d objects. Robotics and Autonomous Systems, 58, 497–507.CrossRef
Zurück zum Zitat Felip, J., Laaksonen, J., Morales, A., & Kyrki, V. (2013). Manipulation primitives: A paradigm for abstraction and execution of grasping and manipulation tasks. Robotics and Autonomous Systems, 61(3), 283–296. doi:10.1016/j.robot.2012.11.010. Felip, J., Laaksonen, J., Morales, A., & Kyrki, V. (2013). Manipulation primitives: A paradigm for abstraction and execution of grasping and manipulation tasks. Robotics and Autonomous Systems, 61(3), 283–296. doi:10.​1016/​j.​robot.​2012.​11.​010.
Zurück zum Zitat Geidenstam, S., Huebner, K., Banksell, D., & Kragic, D. (2009). Learning of 2D grasping strategies from box-based 3D object approximations. In Proceedings of Robotics: Science and Systems, Seattle, USA. Geidenstam, S., Huebner, K., Banksell, D., & Kragic, D. (2009). Learning of 2D grasping strategies from box-based 3D object approximations. In Proceedings of Robotics: Science and Systems, Seattle, USA.
Zurück zum Zitat Goldfeder, C., Allen, P., Lackner, C., & Pelossof, R. (2007). Grasp planning via decomposition trees. In IEEE International Conference on Robotics and Automation 2007 (pp. 4679–4684). doi:10.1109/ROBOT.2007.364200. Goldfeder, C., Allen, P., Lackner, C., & Pelossof, R. (2007). Grasp planning via decomposition trees. In IEEE International Conference on Robotics and Automation 2007 (pp. 4679–4684). doi:10.​1109/​ROBOT.​2007.​364200.
Zurück zum Zitat Goldfeder, C., Ciocarlie, M., Dang, H., & Allen, P. (2009a). The columbia grasp database. In IEEE International Conference on Robotics and Automation 2009, ICRA ’09 (pp. 1710–1716). Goldfeder, C., Ciocarlie, M., Dang, H., & Allen, P. (2009a). The columbia grasp database. In IEEE International Conference on Robotics and Automation 2009, ICRA ’09 (pp. 1710–1716).
Zurück zum Zitat Goldfeder, C., Ciocarlie, M., Peretzman, J., Dang, H., & Allen, P. (2009b). Data-driven grasping with partial sensor data. In IEEE/RSJ International Conference on Intelligent Robots and Systems 2009, IROS 2009 (pp. 1278–1283). doi:10.1109/IROS.2009.5354078. Goldfeder, C., Ciocarlie, M., Peretzman, J., Dang, H., & Allen, P. (2009b). Data-driven grasping with partial sensor data. In IEEE/RSJ International Conference on Intelligent Robots and Systems 2009, IROS 2009 (pp. 1278–1283). doi:10.​1109/​IROS.​2009.​5354078.
Zurück zum Zitat Harris, Z. (1970). Distributional structure. In Papers in Structural and Transformational Linguistics. Dordrecht: D. Reidel Publishing Company (pp. 775–794). Harris, Z. (1970). Distributional structure. In Papers in Structural and Transformational Linguistics. Dordrecht: D. Reidel Publishing Company (pp. 775–794).
Zurück zum Zitat Hebert, P., Hudson, N., Ma, J., Howard, T., Fuchs, T., Bajracharya, M., & Burdick, J. (2012). Combined shape, appearance and silhouette for simultaneous manipulator and object tracking. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp 2405–2412). doi:10.1109/ICRA.2012.6225084. Hebert, P., Hudson, N., Ma, J., Howard, T., Fuchs, T., Bajracharya, M., & Burdick, J. (2012). Combined shape, appearance and silhouette for simultaneous manipulator and object tracking. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp 2405–2412). doi:10.​1109/​ICRA.​2012.​6225084.
Zurück zum Zitat Horowitz, M. B., & Burdick, J. W. (2012). Combined grasp and manipulation planning as a trajectory optimization problem. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp. 584–591). doi:10.1109/ICRA.2012.6225104. Horowitz, M. B., & Burdick, J. W. (2012). Combined grasp and manipulation planning as a trajectory optimization problem. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp. 584–591). doi:10.​1109/​ICRA.​2012.​6225104.
Zurück zum Zitat Hsiao, K., Chitta, S., Ciocarlie, M., & Jones, E. (2010). Contact-reactive grasping of objects with partial shape information. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1228–1235). Hsiao, K., Chitta, S., Ciocarlie, M., & Jones, E. (2010). Contact-reactive grasping of objects with partial shape information. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1228–1235).
Zurück zum Zitat Huebner, K., & Kragic, D. (2008). Selection of robot pre-grasps using box-based shape approximation. In IEEE/RSJ International Conference on Intelligent Robots and Systems 2008, IROS 2008 (pp. 1765–1770). doi:10.1109/IROS.2008.4650722. Huebner, K., & Kragic, D. (2008). Selection of robot pre-grasps using box-based shape approximation. In IEEE/RSJ International Conference on Intelligent Robots and Systems 2008, IROS 2008 (pp. 1765–1770). doi:10.​1109/​IROS.​2008.​4650722.
Zurück zum Zitat Jia, Y.B. (2000). Grasping curved objects through rolling. In Proceedings of IEEE International Conference on Robotics and Automation 2000, ICRA ’00 (Vol. 1, pp. 377–382). doi:10.1109/ROBOT.2000.844085. Jia, Y.B. (2000). Grasping curved objects through rolling. In Proceedings of IEEE International Conference on Robotics and Automation 2000, ICRA ’00 (Vol. 1, pp. 377–382). doi:10.​1109/​ROBOT.​2000.​844085.
Zurück zum Zitat Jiang, L. T., & Smith, J. R. (2012). Seashell effect pretouch sensing for robotic grasping. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 2851–2858). doi:10.1109/ICRA.2012.6224985. Jiang, L. T., & Smith, J. R. (2012). Seashell effect pretouch sensing for robotic grasping. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 2851–2858). doi:10.​1109/​ICRA.​2012.​6224985.
Zurück zum Zitat Jiang, Y., Moseson, S., & Saxena, A. (2011). Efficient grasping from rgbd images: Learning using a new rectangle representation. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 3304–3311). doi:0.1109/ICRA.2011.5980145. Jiang, Y., Moseson, S., & Saxena, A. (2011). Efficient grasping from rgbd images: Learning using a new rectangle representation. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 3304–3311). doi:0.​1109/​ICRA.​2011.​5980145.
Zurück zum Zitat Kazemi, M., Valois, J. S., Bagnell, J. A., & Pollard, N. (2012). Robust object grasping using force compliant motion primitives. In Proceedings of Robotics: Science and Systems, Sydney, Australia. Kazemi, M., Valois, J. S., Bagnell, J. A., & Pollard, N. (2012). Robust object grasping using force compliant motion primitives. In Proceedings of Robotics: Science and Systems, Sydney, Australia.
Zurück zum Zitat Kim, J., Iwamoto, K., Kuffner, J. J., Ota, Y., & Pollard, N. S. (2012). Physically-based grasp quality evaluation under uncertainty. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 3258–3263). doi:10.1109/ICRA.2012.6225342. Kim, J., Iwamoto, K., Kuffner, J. J., Ota, Y., & Pollard, N. S. (2012). Physically-based grasp quality evaluation under uncertainty. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 3258–3263). doi:10.​1109/​ICRA.​2012.​6225342.
Zurück zum Zitat Klingbeil, E., Rao, D., Carpenter, B., Ganapathi, V., Ng, A.Y., & Khatib, O. (2011). Grasping with application to an autonomous checkout robot. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 2837–2844). doi:10.1109/ICRA.2011.5980287. Klingbeil, E., Rao, D., Carpenter, B., Ganapathi, V., Ng, A.Y., & Khatib, O. (2011). Grasping with application to an autonomous checkout robot. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 2837–2844). doi:10.​1109/​ICRA.​2011.​5980287.
Zurück zum Zitat Kootstra G, PopoviÄG M, JÃÿrgensen JA, Kuklinski K, Miatliuk K, Kragic D, & KrÃger N. (2012). Enabling grasping of unknown objects through a synergistic use of edge and surface information. The International Journal of Robotics Research, 31(10), 1190–1213. doi:10.1177/0278364912452621. Kootstra G, PopoviÄG M, JÃÿrgensen JA, Kuklinski K, Miatliuk K, Kragic D, & KrÃger N. (2012). Enabling grasping of unknown objects through a synergistic use of edge and surface information. The International Journal of Robotics Research, 31(10), 1190–1213. doi:10.​1177/​0278364912452621​.
Zurück zum Zitat Laaksonen, J., Nikandrova, E., & Kyrki, V. (2012). Probabilistic sensor-based grasping. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012 (pp. 2019–2026). doi:10.1109/IROS.2012.6385621. Laaksonen, J., Nikandrova, E., & Kyrki, V. (2012). Probabilistic sensor-based grasping. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012 (pp. 2019–2026). doi:10.​1109/​IROS.​2012.​6385621.
Zurück zum Zitat Le, Q., Kamm, D., Kara, A., & Ng, A. (2010). Learning to grasp objects with multiple contact points. In IEEE International Conference on Robotics and Automation (ICRA), 2010 (pp. 5062–5069). doi:10.1109/ROBOT.2010.5509508. Le, Q., Kamm, D., Kara, A., & Ng, A. (2010). Learning to grasp objects with multiple contact points. In IEEE International Conference on Robotics and Automation (ICRA), 2010 (pp. 5062–5069). doi:10.​1109/​ROBOT.​2010.​5509508.
Zurück zum Zitat Li, Z., & Sastry, S. (1988). Task-oriented optimal grasping by multifingered robot hands. IEEE Journal of Robotics and Automation, 4(1), 32–44. doi:10.1109/56.769.CrossRef Li, Z., & Sastry, S. (1988). Task-oriented optimal grasping by multifingered robot hands. IEEE Journal of Robotics and Automation, 4(1), 32–44. doi:10.​1109/​56.​769.CrossRef
Zurück zum Zitat López-Coronado, J., & Pedreño Molina, J. (2002). A neural model for visual-tactile-motor integration in robotic reaching and grasping tasks. Robotica, 20, 23–31.CrossRef López-Coronado, J., & Pedreño Molina, J. (2002). A neural model for visual-tactile-motor integration in robotic reaching and grasping tasks. Robotica, 20, 23–31.CrossRef
Zurück zum Zitat MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In L.M.L Cam, J. Neyman (Eds.). Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability Berkeley: University of California Press (Vol. 1, pp. 281–297). MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In L.M.L Cam, J. Neyman (Eds.). Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability Berkeley: University of California Press (Vol. 1, pp. 281–297).
Zurück zum Zitat Miller, A., & Allen, P. (1999). Examples of 3d grasp quality computations. In Proceeding of IEEE International Conference on Robotics and Automation 1999 (Vol. 2, pp. 1240–1246). Miller, A., & Allen, P. (1999). Examples of 3d grasp quality computations. In Proceeding of IEEE International Conference on Robotics and Automation 1999 (Vol. 2, pp. 1240–1246).
Zurück zum Zitat Miller, A., Knoop, S., Christensen, H., & Allen, P. (2003). Automatic grasp planning using shape primitives. In Proceedings of IEEE International Conference on Robotics and Automation 2003, ICRA ’03 (Vol. 2, pp. 1824–1829). doi:10.1109/ROBOT.2003.1241860. Miller, A., Knoop, S., Christensen, H., & Allen, P. (2003). Automatic grasp planning using shape primitives. In Proceedings of IEEE International Conference on Robotics and Automation 2003, ICRA ’03 (Vol. 2, pp. 1824–1829). doi:10.​1109/​ROBOT.​2003.​1241860.
Zurück zum Zitat Miller, A. T., & Allen, P. K. (2004). Graspit! a versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine, 11(4), 110–122. Miller, A. T., & Allen, P. K. (2004). Graspit! a versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine, 11(4), 110–122.
Zurück zum Zitat Mishra, T., & Mishra, B. (1994). Reactive algorithms for 2 and 3 finger grasping. In IEEE/RSJ International Workshop on Intelligent Robots and Systems. Mishra, T., & Mishra, B. (1994). Reactive algorithms for 2 and 3 finger grasping. In IEEE/RSJ International Workshop on Intelligent Robots and Systems.
Zurück zum Zitat Morales, A., Prats, M., Sanz, P., & Pobil, A.P. (2007). An experiment in the use of manipulation primitives and tactile perception for reactive grasping. In Workshop on Robot Manipulation: Sensing and Adapting to the Real World, Robotics: Science and Systems (RSS 2007). Morales, A., Prats, M., Sanz, P., & Pobil, A.P. (2007). An experiment in the use of manipulation primitives and tactile perception for reactive grasping. In Workshop on Robot Manipulation: Sensing and Adapting to the Real World, Robotics: Science and Systems (RSS 2007).
Zurück zum Zitat Nikandrova E, Laaksonen J, & Kyrki V (2012). Explorative sensor-based grasp planning. In G. Herrmann, M. Studley, M. Pearson, A. Conn, C. Melhuish, M. Witkowski, J.H. Kim, P. Vadakkepat (Eds.), Lecture Notes in Computer Science, Advances in Autonomous Robotics (Vol. 7429, pp. 197–208), Berlin: Springer. Nikandrova E, Laaksonen J, & Kyrki V (2012). Explorative sensor-based grasp planning. In G. Herrmann, M. Studley, M. Pearson, A. Conn, C. Melhuish, M. Witkowski, J.H. Kim, P. Vadakkepat (Eds.), Lecture Notes in Computer Science, Advances in Autonomous Robotics (Vol. 7429, pp. 197–208), Berlin: Springer.
Zurück zum Zitat Papazov, C., & Burschka, D. (2010). An efficient ransac for 3d object recognition in noisy and occluded scenes. In Asian Conference on Computer Vision (pp. 135–148). Papazov, C., & Burschka, D. (2010). An efficient ransac for 3d object recognition in noisy and occluded scenes. In Asian Conference on Computer Vision (pp. 135–148).
Zurück zum Zitat Petrovskaya, A., Khatib, O., Thrun, S., & Ng, A. (2006). Bayesian estimation for autonomous object manipulation based on tactile sensors. In Proceedings of IEEE International Conference on Robotics and Automation 2006, ICRA (2006) (pp. 707–714). doi:10.1109/ROBOT.2006.1641793. Petrovskaya, A., Khatib, O., Thrun, S., & Ng, A. (2006). Bayesian estimation for autonomous object manipulation based on tactile sensors. In Proceedings of IEEE International Conference on Robotics and Automation 2006, ICRA (2006) (pp. 707–714). doi:10.​1109/​ROBOT.​2006.​1641793.
Zurück zum Zitat Pezzementi, Z., Jantho, E., Estrade, L., & Hager, G. (2010). Characterization and simulation of tactile sensors. In IEEE International Conference on Haptics Symposium 2010 (pp. 199–205). doi:10.1109/HAPTIC.2010.5444654. Pezzementi, Z., Jantho, E., Estrade, L., & Hager, G. (2010). Characterization and simulation of tactile sensors. In IEEE International Conference on Haptics Symposium 2010 (pp. 199–205). doi:10.​1109/​HAPTIC.​2010.​5444654.
Zurück zum Zitat Pezzementi, Z., Reyda, C., & Hager, G. (2011). Object mapping, recognition, and localization from tactile geometry. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 5942–5948). doi:10.1109/ICRA.2011.5980363. Pezzementi, Z., Reyda, C., & Hager, G. (2011). Object mapping, recognition, and localization from tactile geometry. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 5942–5948). doi:10.​1109/​ICRA.​2011.​5980363.
Zurück zum Zitat Platt, R. (2007). Learning grasp strategies composed of contact relative motions. In 7th IEEE-RAS International Conference on Humanoid Robots 2007 (pp. 49–56). doi:10.1109/ICHR.2007.4813848. Platt, R. (2007). Learning grasp strategies composed of contact relative motions. In 7th IEEE-RAS International Conference on Humanoid Robots 2007 (pp. 49–56). doi:10.​1109/​ICHR.​2007.​4813848.
Zurück zum Zitat Popovic, M., Kraft, D., Bodenhagen, L., Baseski, E., Pugeault, N., Kragic, D., et al. (2010). A strategy for grasping unknown objects based on co-planarity and colour information. Robotics and Autonomous Systems, 58(5), 551–565.CrossRef Popovic, M., Kraft, D., Bodenhagen, L., Baseski, E., Pugeault, N., Kragic, D., et al. (2010). A strategy for grasping unknown objects based on co-planarity and colour information. Robotics and Autonomous Systems, 58(5), 551–565.CrossRef
Zurück zum Zitat Przybylski, M., Asfour, T., & Dillmann, R. (2011). Planning grasps for robotic hands using a novel object representation based on the medial axis transform. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1781–1788). Przybylski, M., Asfour, T., & Dillmann, R. (2011). Planning grasps for robotic hands using a novel object representation based on the medial axis transform. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1781–1788).
Zurück zum Zitat Rao, D., Le, Q., Phoka, T., Quigley, M., Sudsang, A., & Ng, A. (2010). Grasping novel objects with depth segmentation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2578–2585). Rao, D., Le, Q., Phoka, T., Quigley, M., Sudsang, A., & Ng, A. (2010). Grasping novel objects with depth segmentation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2578–2585).
Zurück zum Zitat Roa, M. A., Argus, M. J., Leidner, D., Borst, C., & Hirzinger, G. (2012). Power grasp planning for anthropomorphic robot hands. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 563–569). doi:10.1109/ICRA.2012.6225068. Roa, M. A., Argus, M. J., Leidner, D., Borst, C., & Hirzinger, G. (2012). Power grasp planning for anthropomorphic robot hands. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 563–569). doi:10.​1109/​ICRA.​2012.​6225068.
Zurück zum Zitat Saxena, A., Driemeyer, J., Kearns, J., & Ng, A. Y. (2007). Robotic grasping of novel objects. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19 (pp. 1209–1216). Cambridge, MA: MIT Press. Saxena, A., Driemeyer, J., Kearns, J., & Ng, A. Y. (2007). Robotic grasping of novel objects. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19 (pp. 1209–1216). Cambridge, MA: MIT Press.
Zurück zum Zitat Saxena, A., Driemeyer, J., & Ng, A. Y. (2008). Robotic grasping of novel objects using vision. The International Journal of Robotics Research, 27(2), 157–173.CrossRef Saxena, A., Driemeyer, J., & Ng, A. Y. (2008). Robotic grasping of novel objects using vision. The International Journal of Robotics Research, 27(2), 157–173.CrossRef
Zurück zum Zitat Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The princeton shape benchmark. In Shape Modeling International (pp. 167–178). Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The princeton shape benchmark. In Shape Modeling International (pp. 167–178).
Zurück zum Zitat Stulp, F., Theodorou, E., Buchli, J., & Schaal, S. (2011). Learning to grasp under uncertainty. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 5703–5708). Stulp, F., Theodorou, E., Buchli, J., & Schaal, S. (2011). Learning to grasp under uncertainty. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 5703–5708).
Zurück zum Zitat Wang, D., Watson, B.T., & Fagg, A. (2007). A switching control approach to haptic exploration for quality grasps. In Proceedings of the Robotics: Science & Systems 2007 Workshop on Sensing and Adapting to the Real World. Wang, D., Watson, B.T., & Fagg, A. (2007). A switching control approach to haptic exploration for quality grasps. In Proceedings of the Robotics: Science & Systems 2007 Workshop on Sensing and Adapting to the Real World.
Zurück zum Zitat Weisz, J., & Allen, P.K. (2012). Pose error robust grasping from contact wrench space metrics. In IEEE International Conference on Robotics and Automation (ICRA), 2012. (pp. 557–562). doi:10.1109/ICRA.2012.6224697. Weisz, J., & Allen, P.K. (2012). Pose error robust grasping from contact wrench space metrics. In IEEE International Conference on Robotics and Automation (ICRA), 2012. (pp. 557–562). doi:10.​1109/​ICRA.​2012.​6224697.
Zurück zum Zitat Zhang, L., & Trinkle, J. C. (2012). The application of particle filtering to grasping acquisition with visual occlusion and tactile sensing. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp. 3805–3812). doi:10.1109/ICRA.2012.6225125. Zhang, L., & Trinkle, J. C. (2012). The application of particle filtering to grasping acquisition with visual occlusion and tactile sensing. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp. 3805–3812). doi:10.​1109/​ICRA.​2012.​6225125.
Metadaten
Titel
Stable grasping under pose uncertainty using tactile feedback
verfasst von
Hao Dang
Peter K. Allen
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 4/2014
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-013-9355-y

Weitere Artikel der Ausgabe 4/2014

Autonomous Robots 4/2014 Zur Ausgabe

Neuer Inhalt