Skip to main content
Erschienen in: Autonomous Robots 1/2015

01.06.2015

Finger contact sensing and the application in dexterous hand manipulation

verfasst von: Hongbin Liu, Kien Cuong Nguyen, Véronique Perdereau, Joao Bimbo, Junghwan Back, Matthew Godden, Lakmal D. Seneviratne, Kaspar Althoefer

Erschienen in: Autonomous Robots | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we introduce a novel contact-sensing algorithm for a robotic fingertip which is equipped with a 6-axis force/torque sensor and covered with a deformable rubber skin. The design and the sensing algorithm of the fingertip for effective contact information identification are introduced. Validation tests show that the contact sensing fingertip can estimate contact information, including the contact location on the fingertip, the direction and the magnitude of the friction and normal forces, the local torque generated at the surface, at high speed (158–242 Hz) and with high precision. Experiments show that the proposed algorithm is robust and accurate when the friction coefficient \(\le \)1. Obtaining such contact information in real-time are essential for fine object manipulation. Using the contact sensing fingertip for surface exploration has been demonstrated, indicating the advantage gained by using the identified contact information from the proposed contact-sensing method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The work presented in this paper has been done in collaboration between King’s College London (KCL), Université Pierre et Marie Curie (UPMC) and Shadow Robot Company (Shadow) within the HANDLE project (grant agreement ICT 231640). KCL has contributed on the fingertip contact sensing algorithm, Shadow has contributed in the fingertip design and fabrication and UPMC has contributed on the finger force feedback control and the object surface exploration using the contact information identified by the fingertip. The object pose estimation using the finger has been done by KCL with contribution from UPMC.
 
Literatur
Zurück zum Zitat Agache, P. G., Monneur, C., Leveque, J. L., & De Rigal, J. (1980). Mechanical properties and Young’s modulus of human skin in vivo. Archives of Dermatological Research, 269(3), 221–232.CrossRef Agache, P. G., Monneur, C., Leveque, J. L., & De Rigal, J. (1980). Mechanical properties and Young’s modulus of human skin in vivo. Archives of Dermatological Research, 269(3), 221–232.CrossRef
Zurück zum Zitat Back, J., Bimbo, J., Noh, Y., Seneviratne, L. D., Althoefer, K., & Liu, H. (2014). Controlling a contact sensing finger for surface haptic exploration. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2736–2741). Back, J., Bimbo, J., Noh, Y., Seneviratne, L. D., Althoefer, K., & Liu, H. (2014). Controlling a contact sensing finger for surface haptic exploration. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2736–2741).
Zurück zum Zitat Bard, Y. (1970). Comparison of gradient methods for the solution of nonlinear parameter estimation problems. SIAM Journal on Numerical Analysis, 7(1), 157–186.CrossRefMATHMathSciNet Bard, Y. (1970). Comparison of gradient methods for the solution of nonlinear parameter estimation problems. SIAM Journal on Numerical Analysis, 7(1), 157–186.CrossRefMATHMathSciNet
Zurück zum Zitat Bicchi, A., Salisbury, J. K., & Brock, D. L. (1993). Contact sensing from force measurements. The International Journal of Robotics Research, 12(3), 249–262.CrossRef Bicchi, A., Salisbury, J. K., & Brock, D. L. (1993). Contact sensing from force measurements. The International Journal of Robotics Research, 12(3), 249–262.CrossRef
Zurück zum Zitat Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.CrossRef Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.CrossRef
Zurück zum Zitat Bimbo, J., Seneviratne, L. D., Althoefer, K., & Liu, H. (2013). Combining touch and vision for the estimation of an object’s pose during manipulation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4021–4026). Bimbo, J., Seneviratne, L. D., Althoefer, K., & Liu, H. (2013). Combining touch and vision for the estimation of an object’s pose during manipulation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4021–4026).
Zurück zum Zitat Bossert, D., Ly, U. L., & Vagners, J. (1996). Experimental evaluation of a hybrid position and force surface following algorithm for unknown surfaces. In Proceedings of IEEE International Conference on Robotics and Automation, 1996 (Vol. 3, pp. 2252–2257). Bossert, D., Ly, U. L., & Vagners, J. (1996). Experimental evaluation of a hybrid position and force surface following algorithm for unknown surfaces. In Proceedings of IEEE International Conference on Robotics and Automation, 1996 (Vol. 3, pp. 2252–2257).
Zurück zum Zitat Chang, W. C. (2004). Cartesian-based planar contour following with automatic hybrid force and visual feedback. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (Vol. 3, pp. 3062–3067). Chang, W. C. (2004). Cartesian-based planar contour following with automatic hybrid force and visual feedback. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (Vol. 3, pp. 3062–3067).
Zurück zum Zitat Dahiya, R. S., Metta, G., Valle, M., & Sandini, G. (2010). Tactile sensing-from humans to humanoids. IEEE Transactions on Robotics, 26(1), 1–20.CrossRef Dahiya, R. S., Metta, G., Valle, M., & Sandini, G. (2010). Tactile sensing-from humans to humanoids. IEEE Transactions on Robotics, 26(1), 1–20.CrossRef
Zurück zum Zitat Dahiya, R. S., Cattin, D., Adami, A., Collini, C., Barboni, L., Valle, M., et al. (2011). Towards tactile sensing system on chip for robotic applications. IEEE Sensors Journal, 11(12), 3216–3226.CrossRef Dahiya, R. S., Cattin, D., Adami, A., Collini, C., Barboni, L., Valle, M., et al. (2011). Towards tactile sensing system on chip for robotic applications. IEEE Sensors Journal, 11(12), 3216–3226.CrossRef
Zurück zum Zitat Dargahi, J. (2000). A piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications. Sensors and Actuators A: Physical, 80(1), 23–30.CrossRef Dargahi, J. (2000). A piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications. Sensors and Actuators A: Physical, 80(1), 23–30.CrossRef
Zurück zum Zitat De Maria, G., Natale, C., & Pirozzi, S. (2012). Force/tactile sensor for robotic applications. Sensors and Actuators A: Physical, 175, 60–72.CrossRef De Maria, G., Natale, C., & Pirozzi, S. (2012). Force/tactile sensor for robotic applications. Sensors and Actuators A: Physical, 175, 60–72.CrossRef
Zurück zum Zitat De Maria, G., Natale, C., & Pirozzi, S. (2013). Tactile data modeling and interpretation for stable grasping and manipulation. Robotics and Autonomous Systems, 61(9), 1008–1020.CrossRef De Maria, G., Natale, C., & Pirozzi, S. (2013). Tactile data modeling and interpretation for stable grasping and manipulation. Robotics and Autonomous Systems, 61(9), 1008–1020.CrossRef
Zurück zum Zitat Gálvez, J. A., & Gonzalez de Santos, P. (2001). Intrinsic tactile sensing for the optimization of force distribution in a pipe crawling robot. IEEE/ASME Transactions on Mechatronics, 6(1), 26–35.CrossRef Gálvez, J. A., & Gonzalez de Santos, P. (2001). Intrinsic tactile sensing for the optimization of force distribution in a pipe crawling robot. IEEE/ASME Transactions on Mechatronics, 6(1), 26–35.CrossRef
Zurück zum Zitat Ho, V. A., Dao, D. V., Sugiyama, S., & Hirai, S. (2011). Development and analysis of a sliding tactile soft fingertip embedded with a microforce/moment sensor. IEEE Transactions on Robotics, 27(3), 411–424.CrossRef Ho, V. A., Dao, D. V., Sugiyama, S., & Hirai, S. (2011). Development and analysis of a sliding tactile soft fingertip embedded with a microforce/moment sensor. IEEE Transactions on Robotics, 27(3), 411–424.CrossRef
Zurück zum Zitat Howe, R. D., & Cutkosky, M. R. (1996). Practical force-motion models for sliding manipulation. The International Journal of Robotics Research, 15(6), 557–572.CrossRef Howe, R. D., & Cutkosky, M. R. (1996). Practical force-motion models for sliding manipulation. The International Journal of Robotics Research, 15(6), 557–572.CrossRef
Zurück zum Zitat Inoue, T., & Hirai, S. (2006). Elastic model of deformable fingertip for soft-fingered manipulation. IEEE Transactions on Robotics, 22(6), 1273–1279.CrossRef Inoue, T., & Hirai, S. (2006). Elastic model of deformable fingertip for soft-fingered manipulation. IEEE Transactions on Robotics, 22(6), 1273–1279.CrossRef
Zurück zum Zitat Inoue, T., & Hirai, S. (2009). Mechanics and control of soft-fingered manipulation. London: Springer. Inoue, T., & Hirai, S. (2009). Mechanics and control of soft-fingered manipulation. London: Springer.
Zurück zum Zitat Jamali, N., & Sammut, C. (2011). Majority voting: Material classification by tactile sensing using surface texture. IEEE Transactions on Robotics, 27(3), 508–521.CrossRef Jamali, N., & Sammut, C. (2011). Majority voting: Material classification by tactile sensing using surface texture. IEEE Transactions on Robotics, 27(3), 508–521.CrossRef
Zurück zum Zitat Jatta, F., Legnani, G., & Visioli, A. (2006). Friction compensation in hybrid force/velocity control of industrial manipulators. IEEE Transactions on Industrial Electronics, 53, 604–613.CrossRef Jatta, F., Legnani, G., & Visioli, A. (2006). Friction compensation in hybrid force/velocity control of industrial manipulators. IEEE Transactions on Industrial Electronics, 53, 604–613.CrossRef
Zurück zum Zitat Johansson, R. S., & Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5), 345–359.CrossRef Johansson, R. S., & Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5), 345–359.CrossRef
Zurück zum Zitat Kao, I., & Cutkosky, M. R. (1993). Comparison of theoretical and experimental force/motion trajectories for dextrous manipulation with sliding. The International Journal of Robotics Research, 12(6), 529–534.CrossRef Kao, I., & Cutkosky, M. R. (1993). Comparison of theoretical and experimental force/motion trajectories for dextrous manipulation with sliding. The International Journal of Robotics Research, 12(6), 529–534.CrossRef
Zurück zum Zitat Kao, I., & Yang, F. (2004). Stiffness and contact mechanics for soft fingers in grasping and manipulation. IEEE Transactions on Robotics and Automation, 20(1), 132–135.CrossRef Kao, I., & Yang, F. (2004). Stiffness and contact mechanics for soft fingers in grasping and manipulation. IEEE Transactions on Robotics and Automation, 20(1), 132–135.CrossRef
Zurück zum Zitat Kemp, C. C., Edsinger, A., & Torres-Jara, E. (2007). Challenges for robot manipulation in human environments [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1), 20–29.CrossRef Kemp, C. C., Edsinger, A., & Torres-Jara, E. (2007). Challenges for robot manipulation in human environments [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1), 20–29.CrossRef
Zurück zum Zitat Lederman, S. J., & Klatzky, R. L. (1990). Haptic classification of common objects: Knowledge-driven exploration. Cognitive Psychology, 22(4), 421–459.CrossRef Lederman, S. J., & Klatzky, R. L. (1990). Haptic classification of common objects: Knowledge-driven exploration. Cognitive Psychology, 22(4), 421–459.CrossRef
Zurück zum Zitat Liang, X., & Boppart, S. A. (2010). Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Transactions on Biomedical Engineering, 57(4), 953–959.CrossRef Liang, X., & Boppart, S. A. (2010). Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Transactions on Biomedical Engineering, 57(4), 953–959.CrossRef
Zurück zum Zitat Liu, H., Song, X., Bimbo, J., Althoefer, K., & Seneviratne, L. (2012a). Surface material recognition through haptic exploration using an intelligent contact sensing finger. In IEEE/RSJ International Conference Intelligent Robots and Systems (pp. 52–57). Liu, H., Song, X., Bimbo, J., Althoefer, K., & Seneviratne, L. (2012a). Surface material recognition through haptic exploration using an intelligent contact sensing finger. In IEEE/RSJ International Conference Intelligent Robots and Systems (pp. 52–57).
Zurück zum Zitat Liu, H., Song, X., Nanayakkara, T., Seneviratne, L. D., & Althoefer, K. (2012b). A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1410–1415). Liu, H., Song, X., Nanayakkara, T., Seneviratne, L. D., & Althoefer, K. (2012b). A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1410–1415).
Zurück zum Zitat Madsen, K., Nielsen, H. B., & Tingleff, O. (2004). Methods for non-linear least square problems (2nd ed.). IMM, DTU: Lecture Notes. Madsen, K., Nielsen, H. B., & Tingleff, O. (2004). Methods for non-linear least square problems (2nd ed.). IMM, DTU: Lecture Notes.
Zurück zum Zitat Murakami, K., & Hasegawa, T. (2005). Tactile sensing of edge direction of an object with a soft fingertip contact. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 2571–2577). Murakami, K., & Hasegawa, T. (2005). Tactile sensing of edge direction of an object with a soft fingertip contact. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 2571–2577).
Zurück zum Zitat Nguyen, K. C., & Perdereau, V. (2013). Fingertip force control based on max torque adjustment for dexterous manipulation of an anthropomorphic hand. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3557–3563). Nguyen, K. C., & Perdereau, V. (2013). Fingertip force control based on max torque adjustment for dexterous manipulation of an anthropomorphic hand. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3557–3563).
Zurück zum Zitat Ohka, M., Kobayashi, H., Takata, J., & Mitsuya, Y. (2008). An experimental optical three-axis tactile sensor featured with hemispherical surface. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2(5), 860–873.CrossRef Ohka, M., Kobayashi, H., Takata, J., & Mitsuya, Y. (2008). An experimental optical three-axis tactile sensor featured with hemispherical surface. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2(5), 860–873.CrossRef
Zurück zum Zitat Okamura, A. M., & Cutkosky, M. R. (2001). Feature detection for haptic exploration with robotic fingers. The International Journal of Robotics Research, 20(12), 925–938.CrossRef Okamura, A. M., & Cutkosky, M. R. (2001). Feature detection for haptic exploration with robotic fingers. The International Journal of Robotics Research, 20(12), 925–938.CrossRef
Zurück zum Zitat Olsson, H., Åström, K. J., Gäfvert, M., & Lischinsky, P. (1998). Friction models and friction compensation. European Journal of Control, 4(3), 176–195.CrossRefMATH Olsson, H., Åström, K. J., Gäfvert, M., & Lischinsky, P. (1998). Friction models and friction compensation. European Journal of Control, 4(3), 176–195.CrossRefMATH
Zurück zum Zitat Pawluk, D. T., & Howe, R. D. (1999). Dynamic lumped element response of the human fingerpad. Journal of Biomechanical Engineering, 121(2), 178–183.CrossRef Pawluk, D. T., & Howe, R. D. (1999). Dynamic lumped element response of the human fingerpad. Journal of Biomechanical Engineering, 121(2), 178–183.CrossRef
Zurück zum Zitat Puangmali, P., Liu, H., Seneviratne, L. D., Dasgupta, P., & Althoefer, K. (2012). Miniature 3-axis distal force sensor for minimally invasive surgical palpation. IEEE/ASME Transactions on Mechatronics, 17(4), 646–656.CrossRef Puangmali, P., Liu, H., Seneviratne, L. D., Dasgupta, P., & Althoefer, K. (2012). Miniature 3-axis distal force sensor for minimally invasive surgical palpation. IEEE/ASME Transactions on Mechatronics, 17(4), 646–656.CrossRef
Zurück zum Zitat Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K., & Marsden, C. D. (1982). Manual motor performance in a deafferented man. Brain, 105(3), 515–542.CrossRef Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K., & Marsden, C. D. (1982). Manual motor performance in a deafferented man. Brain, 105(3), 515–542.CrossRef
Zurück zum Zitat Salisbury, J. Jr. (1984). Interpretation of contact geometries from force measurements. In Proceedings of the IEEE International Conference on Robotics and Automation, 1984 (Vol. 1, pp. 240–247). IEEE. Salisbury, J. Jr. (1984). Interpretation of contact geometries from force measurements. In Proceedings of the IEEE International Conference on Robotics and Automation, 1984 (Vol. 1, pp. 240–247). IEEE.
Zurück zum Zitat Salo, T., Vančura, T., & Baltes, H. (2006). CMOS-sealed membrane capacitors for medical tactile sensors. Journal of Micromechanics and Microengineering, 16(4), 769–778.CrossRef Salo, T., Vančura, T., & Baltes, H. (2006). CMOS-sealed membrane capacitors for medical tactile sensors. Journal of Micromechanics and Microengineering, 16(4), 769–778.CrossRef
Zurück zum Zitat Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., & Metta, G. (2011). Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Transactions on Robotics, 27(3), 389–400.CrossRef Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., & Metta, G. (2011). Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Transactions on Robotics, 27(3), 389–400.CrossRef
Zurück zum Zitat Shimojo, M., Namiki, A., Ishikawa, M., Makino, R., & Mabuchi, K. (2004). A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sensors Journal, 4(5), 589–596.CrossRef Shimojo, M., Namiki, A., Ishikawa, M., Makino, R., & Mabuchi, K. (2004). A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sensors Journal, 4(5), 589–596.CrossRef
Zurück zum Zitat Song, X., Liu, H., Bimbo, J., Althoefer, K., & Seneviratne, L. D. (2012). A novel dynamic slip prediction and compensation approach based on haptic surface exploration. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4511–4516). Song, X., Liu, H., Bimbo, J., Althoefer, K., & Seneviratne, L. D. (2012). A novel dynamic slip prediction and compensation approach based on haptic surface exploration. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4511–4516).
Zurück zum Zitat Song, X., Liu, H., Althoefer, K., Nanayakkara, T., & Seneviratne, L. D. (2014). Efficient break-away friction ratio and slip prediction based on haptic surface exploration. IEEE Transactions on Robotics, 30(1), 203–219.CrossRef Song, X., Liu, H., Althoefer, K., Nanayakkara, T., & Seneviratne, L. D. (2014). Efficient break-away friction ratio and slip prediction based on haptic surface exploration. IEEE Transactions on Robotics, 30(1), 203–219.CrossRef
Zurück zum Zitat Teshigawara, S., Tsutsumi, T., Shimizu, S., Suzuki, Y., Ming, A., Ishikawa, M., & Shimojo, M. (2011). Highly sensitive sensor for detection of initial slip and its application in a multi-fingered robot hand. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1097–1102). Teshigawara, S., Tsutsumi, T., Shimizu, S., Suzuki, Y., Ming, A., Ishikawa, M., & Shimojo, M. (2011). Highly sensitive sensor for detection of initial slip and its application in a multi-fingered robot hand. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1097–1102).
Zurück zum Zitat Wettels, N., Santos, V. J., Johansson, R. S., & Loeb, G. E. (2008). Biomimetic tactile sensor array. Advanced Robotics, 22(8), 829–849.CrossRef Wettels, N., Santos, V. J., Johansson, R. S., & Loeb, G. E. (2008). Biomimetic tactile sensor array. Advanced Robotics, 22(8), 829–849.CrossRef
Zurück zum Zitat Wisitsoraat, A., Patthanasetakul, V., Lomas, T., & Tuantranont, A. (2007). Low cost thin film based piezoresistive MEMS tactile sensor. Sensors and Actuators A: Physical, 139(1), 17–22.CrossRef Wisitsoraat, A., Patthanasetakul, V., Lomas, T., & Tuantranont, A. (2007). Low cost thin film based piezoresistive MEMS tactile sensor. Sensors and Actuators A: Physical, 139(1), 17–22.CrossRef
Zurück zum Zitat Xydas, N., & Kao, I. (1999). Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results. The International Journal of Robotics Research, 18(9), 941–950.CrossRef Xydas, N., & Kao, I. (1999). Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results. The International Journal of Robotics Research, 18(9), 941–950.CrossRef
Zurück zum Zitat Yamada, T., Tanaka, A., Yamada, M., Yamamoto, & H., Funahashi, Y. (2010). Autonomous sensing strategy for parameter identification of contact conditions by active force sensing. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 839–844). Yamada, T., Tanaka, A., Yamada, M., Yamamoto, & H., Funahashi, Y. (2010). Autonomous sensing strategy for parameter identification of contact conditions by active force sensing. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 839–844).
Zurück zum Zitat Yousef, H., Boukallel, M., & Althoefer, K. (2011). Tactile sensing for dexterous in-hand manipulation in robotics–A review. Sensors and Actuators A: Physical, 167(2), 171–187.CrossRef Yousef, H., Boukallel, M., & Althoefer, K. (2011). Tactile sensing for dexterous in-hand manipulation in robotics–A review. Sensors and Actuators A: Physical, 167(2), 171–187.CrossRef
Metadaten
Titel
Finger contact sensing and the application in dexterous hand manipulation
verfasst von
Hongbin Liu
Kien Cuong Nguyen
Véronique Perdereau
Joao Bimbo
Junghwan Back
Matthew Godden
Lakmal D. Seneviratne
Kaspar Althoefer
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 1/2015
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-015-9425-4

Weitere Artikel der Ausgabe 1/2015

Autonomous Robots 1/2015 Zur Ausgabe

Neuer Inhalt