Skip to main content
Erschienen in: Autonomous Robots 4/2016

01.04.2016

An admittance shaping controller for exoskeleton assistance of the lower extremities

verfasst von: Gabriel Aguirre-Ollinger, Umashankar Nagarajan, Ambarish Goswami

Erschienen in: Autonomous Robots | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a method for lower-limb exoskeleton control that defines assistance as a desired dynamic response for the human leg. Wearing the exoskeleton can be seen as replacing the leg’s natural admittance with the equivalent admittance of the coupled system. The control goal is to make the leg obey an admittance model defined by target values of natural frequency, peak magnitude and zero-frequency response. No estimation of muscle torques or motion intent is necessary. Instead, the controller scales up the coupled system’s sensitivity transfer function by means of a compensator employing positive feedback. This approach increases the leg’s mobility and makes the exoskeleton an active device capable of performing net positive work on the limb. Although positive feedback is usually considered destabilizing, here performance and robust stability are successfully achieved through a constrained optimization that maximizes the system’s gain margins while ensuring the desired location of its dominant poles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For stiffness perturbations the area under \(\ln |S_h(j\omega )|\) remains constant, meaning that if the sensitivity increases in one frequency range, it will be attenuated in the same proportion elsewhere.
 
2
Stiffness reduction (equivalently, increase in DC gain) stands apart because it obeys the zero sensitivity integral property.
 
Literatur
Zurück zum Zitat Agrawal, S., Banala, S., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J., et al. (2007). Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3), 410–420. doi:10.1109/TNSRE.2007.903930.CrossRef Agrawal, S., Banala, S., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J., et al. (2007). Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3), 410–420. doi:10.​1109/​TNSRE.​2007.​903930.CrossRef
Zurück zum Zitat Aguirre-Ollinger, G. (2009). Active impedance control of a lower-limb assistive exoskeleton. Dissertation, Northwestern University, Evanston. Aguirre-Ollinger, G. (2009). Active impedance control of a lower-limb assistive exoskeleton. Dissertation, Northwestern University, Evanston.
Zurück zum Zitat Aguirre-Ollinger, G. (2013). Learning muscle activation patterns via nonlinear oscillators: Application to lower-limb assistance. In 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1182–1189). Aguirre-Ollinger, G. (2013). Learning muscle activation patterns via nonlinear oscillators: Application to lower-limb assistance. In 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1182–1189).
Zurück zum Zitat Aguirre-Ollinger, G. (2014). Globally stable control of a dynamic bipedal walker using adaptive frequency oscillators. Robotica, 32(7), 1039–1063.CrossRef Aguirre-Ollinger, G. (2014). Globally stable control of a dynamic bipedal walker using adaptive frequency oscillators. Robotica, 32(7), 1039–1063.CrossRef
Zurück zum Zitat Aguirre-Ollinger, G. (2015). Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: Adaptation of muscle activation and movement frequency. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 229(1), 52–68. doi:10.1177/0954411914567213.CrossRef Aguirre-Ollinger, G. (2015). Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: Adaptation of muscle activation and movement frequency. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 229(1), 52–68. doi:10.​1177/​0954411914567213​.CrossRef
Zurück zum Zitat Aguirre-Ollinger, G., Colgate, J., Peshkin, M., & Goswami, A. (2007). A 1-DOF assistive exoskeleton with virtual negative damping: Effects on the kinematic response of the lower limbs. In IEEE/RSJ international conference on intelligent robots and systems IROS, 2007 (pp. 1938–1944). Aguirre-Ollinger, G., Colgate, J., Peshkin, M., & Goswami, A. (2007). A 1-DOF assistive exoskeleton with virtual negative damping: Effects on the kinematic response of the lower limbs. In IEEE/RSJ international conference on intelligent robots and systems IROS, 2007 (pp. 1938–1944).
Zurück zum Zitat Aguirre-Ollinger, G., Colgate, J., Peshkin, M., & Goswami, A. (2011). Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. The International Journal of Robotics Research, 30(4), 486–499. Aguirre-Ollinger, G., Colgate, J., Peshkin, M., & Goswami, A. (2011). Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. The International Journal of Robotics Research, 30(4), 486–499.
Zurück zum Zitat Aguirre-Ollinger, G., Colgate, J., Peshkin, M., & Goswami, A. (2012). Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: Initial experiments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 68–77.CrossRef Aguirre-Ollinger, G., Colgate, J., Peshkin, M., & Goswami, A. (2012). Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: Initial experiments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 68–77.CrossRef
Zurück zum Zitat American Honda Motor Co, Inc. (2009). Honda-walk assist and mobility devices. corporate.honda.com/innovation/walk-assist. American Honda Motor Co, Inc. (2009). Honda-walk assist and mobility devices. corporate.honda.com/innovation/walk-assist.
Zurück zum Zitat Astrom, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton, NJ: Princeton University Press. Astrom, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton, NJ: Princeton University Press.
Zurück zum Zitat Banala, S., Agrawal, S. K., Fattah, A., Krishnamoorthy, V., Hsu, W. L., Scholz, J., et al. (2006). Gravity-balancing leg orthosis and its performance evaluation. IEEE Transactions on Robotics, 22(6), 1228–1239.CrossRef Banala, S., Agrawal, S. K., Fattah, A., Krishnamoorthy, V., Hsu, W. L., Scholz, J., et al. (2006). Gravity-balancing leg orthosis and its performance evaluation. IEEE Transactions on Robotics, 22(6), 1228–1239.CrossRef
Zurück zum Zitat Banala, S., Kim, S., Agrawal, S., & Scholz, J. (2009). Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(1), 2–8.CrossRef Banala, S., Kim, S., Agrawal, S., & Scholz, J. (2009). Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(1), 2–8.CrossRef
Zurück zum Zitat Belanger, P., Dobrovolny, P., Helmy, A., & Zhang, X. (1998). Estimation of angular velocity and acceleration from shaft-encoder measurements. The International Journal of Robotics Research, 17(11), 1225–1233.CrossRef Belanger, P., Dobrovolny, P., Helmy, A., & Zhang, X. (1998). Estimation of angular velocity and acceleration from shaft-encoder measurements. The International Journal of Robotics Research, 17(11), 1225–1233.CrossRef
Zurück zum Zitat Bernhardt, M., Frey, M., Colombo, G., & Riener, R. (2005). Hybrid force-position control yields cooperative behaviour of the rehabilitation robot lokomat. In: 2005 ICORR 2005 9th International Conference on Rehabilitation Robotics (pp. 536–539) Bernhardt, M., Frey, M., Colombo, G., & Riener, R. (2005). Hybrid force-position control yields cooperative behaviour of the rehabilitation robot lokomat. In: 2005 ICORR 2005 9th International Conference on Rehabilitation Robotics (pp. 536–539)
Zurück zum Zitat Blaya, J., & Herr, H. (2004). Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24–31.CrossRef Blaya, J., & Herr, H. (2004). Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24–31.CrossRef
Zurück zum Zitat Boonstra, T., Schouten, A., & van der Kooij, H. (2013). Identification of the contribution of the ankle and hip joints to multi-segmental balance control. Journal of Neuro Engineering and Rehabilitation, 10(23), 1–18. Boonstra, T., Schouten, A., & van der Kooij, H. (2013). Identification of the contribution of the ankle and hip joints to multi-segmental balance control. Journal of Neuro Engineering and Rehabilitation, 10(23), 1–18.
Zurück zum Zitat Buerger, S., & Hogan, N. (2007). Complementary stability and loop shaping for improved human-robot interaction. IEEE Transactions on Robotics, 23(2), 232–244.CrossRef Buerger, S., & Hogan, N. (2007). Complementary stability and loop shaping for improved human-robot interaction. IEEE Transactions on Robotics, 23(2), 232–244.CrossRef
Zurück zum Zitat Colgate, E., & Hogan, N. (1989a). The interaction of robots with passive environments: Application to force feedback control. In Fourth international conference on advanced robotics. Colgate, E., & Hogan, N. (1989a). The interaction of robots with passive environments: Application to force feedback control. In Fourth international conference on advanced robotics.
Zurück zum Zitat Colgate, J., & Hogan, N. (1988). Robust control of dynamically interacting systems. International Journal of Control, 48(1), 65–88.CrossRefMathSciNetMATH Colgate, J., & Hogan, N. (1988). Robust control of dynamically interacting systems. International Journal of Control, 48(1), 65–88.CrossRefMathSciNetMATH
Zurück zum Zitat Colgate, J., & Hogan, N. (1989b). An analysis of contact instability in terms of passive physical equivalents. Proceedings of the IEEE international conference on robotics and automation (pp. 404–409). Colgate, J., & Hogan, N. (1989b). An analysis of contact instability in terms of passive physical equivalents. Proceedings of the IEEE international conference on robotics and automation (pp. 404–409).
Zurück zum Zitat Doke, J., & Kuo, A. D. (2007). Energetic cost of producing cyclic muscle force, rather than work, to swing the human leg. Journal of Experimental Biology, 210, 2390–2398.CrossRef Doke, J., & Kuo, A. D. (2007). Energetic cost of producing cyclic muscle force, rather than work, to swing the human leg. Journal of Experimental Biology, 210, 2390–2398.CrossRef
Zurück zum Zitat Doke, J., Donelan, J. M., & Kuo, A. D. (2005). Mechanics and energetics of swinging the human leg. Journal of Experimental Biology, 208, 439–445.CrossRef Doke, J., Donelan, J. M., & Kuo, A. D. (2005). Mechanics and energetics of swinging the human leg. Journal of Experimental Biology, 208, 439–445.CrossRef
Zurück zum Zitat Dollar, A., & Herr, H. (2008a). Design of a quasi-passive knee exoskeleton to assist running. 2008 IEEE/RSJ international conference on intelligent robots and systems (pp. 747–754). Dollar, A., & Herr, H. (2008a). Design of a quasi-passive knee exoskeleton to assist running. 2008 IEEE/RSJ international conference on intelligent robots and systems (pp. 747–754).
Zurück zum Zitat Dollar, A., & Herr, H. (2008b). Lower extremity exoskeletons and active orthoses: Challenges and state of the art. IEEE Transactions on Robotics, 24(1), 144–158.CrossRef Dollar, A., & Herr, H. (2008b). Lower extremity exoskeletons and active orthoses: Challenges and state of the art. IEEE Transactions on Robotics, 24(1), 144–158.CrossRef
Zurück zum Zitat Ekso Bionics\(^{\rm TM}\) (2013). Ekso bionics—An exoskeleton bionic suit or a wearable robot that helps people walk again. www.eksobionics.com. Ekso Bionics\(^{\rm TM}\) (2013). Ekso bionics—An exoskeleton bionic suit or a wearable robot that helps people walk again. www.​eksobionics.​com.
Zurück zum Zitat Emken, J., Wynne, J., Harkema, S., & Reinkensmeyer, D. (2006). A robotic device for manipulating human stepping. IEEE Transactions on Robotics, 22(1), 185–189.CrossRef Emken, J., Wynne, J., Harkema, S., & Reinkensmeyer, D. (2006). A robotic device for manipulating human stepping. IEEE Transactions on Robotics, 22(1), 185–189.CrossRef
Zurück zum Zitat Fee, J., & Miller, F. (2004). The leg drop pendulum test performed under general anesthesia in spastic cerebral palsy. Developmental Medicine and Child Neurology, 46, 273–281.CrossRef Fee, J., & Miller, F. (2004). The leg drop pendulum test performed under general anesthesia in spastic cerebral palsy. Developmental Medicine and Child Neurology, 46, 273–281.CrossRef
Zurück zum Zitat Ferris, D., Sawicki, G., & Daley, M. (2007). A physiologist’s perspective on robotic exoskeletons for human locomotion. International Journal of Humanoid Robotics, 4, 507–528.CrossRef Ferris, D., Sawicki, G., & Daley, M. (2007). A physiologist’s perspective on robotic exoskeletons for human locomotion. International Journal of Humanoid Robotics, 4, 507–528.CrossRef
Zurück zum Zitat Frigo, C., Crenna, P., & Jensen, L. (1996). Moment-angle relationship at lower limb joints during human walking at different velocities. Journal of Electromyography and Kinesiology, 6(3), 177–190.CrossRef Frigo, C., Crenna, P., & Jensen, L. (1996). Moment-angle relationship at lower limb joints during human walking at different velocities. Journal of Electromyography and Kinesiology, 6(3), 177–190.CrossRef
Zurück zum Zitat Ghista, D. (2008). Applied biomedical engineering mechanics. Boca Raton, FL: CRC Press.CrossRef Ghista, D. (2008). Applied biomedical engineering mechanics. Boca Raton, FL: CRC Press.CrossRef
Zurück zum Zitat Gordon, K., Kinnaird, C., & Ferris, D. (2013). Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton. Journal of Neurophysiology, 109(7), 1804–1814.CrossRef Gordon, K., Kinnaird, C., & Ferris, D. (2013). Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton. Journal of Neurophysiology, 109(7), 1804–1814.CrossRef
Zurück zum Zitat Hogan, N., & Buerger, S. (2006). Relaxing passivity for human-robot interaction. In: Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems. Hogan, N., & Buerger, S. (2006). Relaxing passivity for human-robot interaction. In: Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems.
Zurück zum Zitat Hogan, N., Krebs, H. I., Rohrer, B., Palazzolo, J., Dipietro, L., Fasoli, S., et al. (2006). Motions or muscles? some behavioral factors underlying robotic assistance of motor recovery. Journal of Rehabilitation Research and Development, 43(5), 605.CrossRef Hogan, N., Krebs, H. I., Rohrer, B., Palazzolo, J., Dipietro, L., Fasoli, S., et al. (2006). Motions or muscles? some behavioral factors underlying robotic assistance of motor recovery. Journal of Rehabilitation Research and Development, 43(5), 605.CrossRef
Zurück zum Zitat Kawamoto, H., & Sankai, Y. (2005). Power assist method based on phase sequence and muscle force condition for HAL. Advanced Robotics, 19(7), 717–734.CrossRef Kawamoto, H., & Sankai, Y. (2005). Power assist method based on phase sequence and muscle force condition for HAL. Advanced Robotics, 19(7), 717–734.CrossRef
Zurück zum Zitat Kawamoto, H., Lee, S., Kanbe, S., & Sankai, Y. (2003). Power assist method for HAL-3 using EMG-based feedback controller. In IEEE international conference on systems, man and cybernetics, 2003 (Vol. 2, pp. 1648–1653). Kawamoto, H., Lee, S., Kanbe, S., & Sankai, Y. (2003). Power assist method for HAL-3 using EMG-based feedback controller. In IEEE international conference on systems, man and cybernetics, 2003 (Vol. 2, pp. 1648–1653).
Zurück zum Zitat Kazerooni, H., Racine, J., Huang, Land, & Steger, R. (2005). On the control of the berkeley lower extremity exoskeleton (BLEEX). In Proceedings of the IEEE international conference on robotics and automation ICRA 2005 (pp. 4353–4360). Kazerooni, H., Racine, J., Huang, Land, & Steger, R. (2005). On the control of the berkeley lower extremity exoskeleton (BLEEX). In Proceedings of the IEEE international conference on robotics and automation ICRA 2005 (pp. 4353–4360).
Zurück zum Zitat Kuo, A. D. (2002). Energetics of actively powered locomotion using the simplest walking model. Journal of Biomechanical Engineering, 124, 113–120.CrossRef Kuo, A. D. (2002). Energetics of actively powered locomotion using the simplest walking model. Journal of Biomechanical Engineering, 124, 113–120.CrossRef
Zurück zum Zitat Lee, S., & Sankai, Y. (2003). The natural frequency-based power assist control for lower body with HAL-3. IEEE International Conference on Systems, Man and Cybernetics, 2, 1642–1647. Lee, S., & Sankai, Y. (2003). The natural frequency-based power assist control for lower body with HAL-3. IEEE International Conference on Systems, Man and Cybernetics, 2, 1642–1647.
Zurück zum Zitat Lenzi, T., Carrozza, M., & Agrawal, S. (2013). Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(6), 938–948.CrossRef Lenzi, T., Carrozza, M., & Agrawal, S. (2013). Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(6), 938–948.CrossRef
Zurück zum Zitat Lewis, C., & Ferris, D. (2011). Invariant hip moment pattern while walking with a robotic hip exoskeleton. Journal of Biomechanics, 44(5), 789–793.CrossRef Lewis, C., & Ferris, D. (2011). Invariant hip moment pattern while walking with a robotic hip exoskeleton. Journal of Biomechanics, 44(5), 789–793.CrossRef
Zurück zum Zitat Middleton, R., & Braslavsky, J. (2000). On the relationship between logarithmic sensitivity integrals and limiting optimal control problems. In 2000 proceedings of the 39th IEEE conference on decision and control (Vol. 5, pp. 4990–4995). Middleton, R., & Braslavsky, J. (2000). On the relationship between logarithmic sensitivity integrals and limiting optimal control problems. In 2000 proceedings of the 39th IEEE conference on decision and control (Vol. 5, pp. 4990–4995).
Zurück zum Zitat Mooney, L., Rouse, E., & Herr, H. (2014). Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. Journal of NeuroEngineering and Rehabilitation, 11(1), 80.CrossRef Mooney, L., Rouse, E., & Herr, H. (2014). Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. Journal of NeuroEngineering and Rehabilitation, 11(1), 80.CrossRef
Zurück zum Zitat More, J., & Sorensen, D. (1983). Computing a trust region step. SIAM Journal on Scientific and Statistical Computing, 4(3), 553–572.CrossRefMathSciNetMATH More, J., & Sorensen, D. (1983). Computing a trust region step. SIAM Journal on Scientific and Statistical Computing, 4(3), 553–572.CrossRefMathSciNetMATH
Zurück zum Zitat Nef, T., Mihelj, M., & Riener, R. (2007). ARMin: A robot for patient-cooperative arm therapy. Medical & Biological Engineering & Computing, 45(9), 887–900.CrossRef Nef, T., Mihelj, M., & Riener, R. (2007). ARMin: A robot for patient-cooperative arm therapy. Medical & Biological Engineering & Computing, 45(9), 887–900.CrossRef
Zurück zum Zitat Norris, J., Granata, K. P., Mitros, M. R., Byrne, E. M., & Marsh, A. P. (2007). Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait & Posture, 25, 620–627.CrossRef Norris, J., Granata, K. P., Mitros, M. R., Byrne, E. M., & Marsh, A. P. (2007). Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait & Posture, 25, 620–627.CrossRef
Zurück zum Zitat Petric, T., Gams, A., Ijspeert, A., & Zlajpah, L. (2011). On-line frequency adaptation and movement imitation for rhythmic robotic tasks. International Journal of Robotics Research, 30(14), 1775–1788.CrossRef Petric, T., Gams, A., Ijspeert, A., & Zlajpah, L. (2011). On-line frequency adaptation and movement imitation for rhythmic robotic tasks. International Journal of Robotics Research, 30(14), 1775–1788.CrossRef
Zurück zum Zitat Ronsse, R., Lenzi, T., Vitiello, N., Koopman, B., van Asseldonk, E., De Rossi, S. M., et al. (2011). Oscillator-based assistance of cyclical movements: Model-based and model-free approaches. Medical & Biological Engineering & Computing, 49(10), 1173–1185.CrossRef Ronsse, R., Lenzi, T., Vitiello, N., Koopman, B., van Asseldonk, E., De Rossi, S. M., et al. (2011). Oscillator-based assistance of cyclical movements: Model-based and model-free approaches. Medical & Biological Engineering & Computing, 49(10), 1173–1185.CrossRef
Zurück zum Zitat Royer, T. D., & Martin, P. E. (2005). Manipulations of leg mass and moment of inertia: Effects on energy cost of walking. Medicine and Science in Sports and Exercise, 37(4), 649–656.CrossRef Royer, T. D., & Martin, P. E. (2005). Manipulations of leg mass and moment of inertia: Effects on energy cost of walking. Medicine and Science in Sports and Exercise, 37(4), 649–656.CrossRef
Zurück zum Zitat Sawicki, G., & Ferris, D. (2008). Mechanics and energetics of level walking with powered ankle exoskeletons. Journal of Experimental Biology, 211, 1402–1413.CrossRef Sawicki, G., & Ferris, D. (2008). Mechanics and energetics of level walking with powered ankle exoskeletons. Journal of Experimental Biology, 211, 1402–1413.CrossRef
Zurück zum Zitat Sawicki, G., & Ferris, D. (2009). Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Journal of Experimental Biology, 212, 21–31.CrossRef Sawicki, G., & Ferris, D. (2009). Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Journal of Experimental Biology, 212, 21–31.CrossRef
Zurück zum Zitat Schouten, A., Vlugt, E., & Van der Helm, F. (2008). Design of perturbation signals for the estimation of proprioceptive reflexes. IEEE Transactions on Biomedical Engineering, 55(5), 1612–1619.CrossRef Schouten, A., Vlugt, E., & Van der Helm, F. (2008). Design of perturbation signals for the estimation of proprioceptive reflexes. IEEE Transactions on Biomedical Engineering, 55(5), 1612–1619.CrossRef
Zurück zum Zitat Schuurmans, J., van der Helm, F., & Schouten, A. (2011). Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model. Journal of Computational Neuroscience, 30(3), 555–565.CrossRef Schuurmans, J., van der Helm, F., & Schouten, A. (2011). Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model. Journal of Computational Neuroscience, 30(3), 555–565.CrossRef
Zurück zum Zitat Stein, G. (2003). Respect the unstable. IEEE Control Systems, 23(4), 12–25.CrossRef Stein, G. (2003). Respect the unstable. IEEE Control Systems, 23(4), 12–25.CrossRef
Zurück zum Zitat Sugar, T., Bates, A., Holgate, M., Kerestes, J., Mignolet, M., New, P., Ramachandran, R., Redkar, S., & Wheeler, C. (2015). Limit cycles to enhance human performance based on phase oscillators. Journal of Mechanisms and Robotics, 7(1), 8 pp. doi:10.1115/1.4029336. Sugar, T., Bates, A., Holgate, M., Kerestes, J., Mignolet, M., New, P., Ramachandran, R., Redkar, S., & Wheeler, C. (2015). Limit cycles to enhance human performance based on phase oscillators. Journal of Mechanisms and Robotics, 7(1), 8 pp. doi:10.​1115/​1.​4029336.
Zurück zum Zitat Tafazzoli, F., & Lamontagne, M. (1996). Mechanical behaviour of hamstring muscles in low-back pain patients and control subjects. Clinical Biomechanics, 11(1), 16–24.CrossRef Tafazzoli, F., & Lamontagne, M. (1996). Mechanical behaviour of hamstring muscles in low-back pain patients and control subjects. Clinical Biomechanics, 11(1), 16–24.CrossRef
Zurück zum Zitat Vallery, H., Duschau-Wicke, A., & Riener, R. (2009). Generalized elasticities improve patient-cooperative control of rehabilitation robots. In IEEE International Conference on Rehabilitation Robotics ICORR 2009, June 23–26, Kyoto, Japan (pp. 535–541). Vallery, H., Duschau-Wicke, A., & Riener, R. (2009). Generalized elasticities improve patient-cooperative control of rehabilitation robots. In IEEE International Conference on Rehabilitation Robotics ICORR 2009, June 23–26, Kyoto, Japan (pp. 535–541).
Zurück zum Zitat Vallery, H., Van Asseldonk, E. H. F., Buss, M., & van der Kooij, H. (2009b). Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(1), 23–30.CrossRef Vallery, H., Van Asseldonk, E. H. F., Buss, M., & van der Kooij, H. (2009b). Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(1), 23–30.CrossRef
Zurück zum Zitat Van Asseldonk, E., Ekkelenkamp, R., Veneman, J., Van der Helm, F., & Van der Kooij, H. (2007). Selective control of a subtask of walking in a robotic gait trainer(LOPES). Proceedings of the IEEE international conference on rehabilitation robotics (pp. 841–848). Van Asseldonk, E., Ekkelenkamp, R., Veneman, J., Van der Helm, F., & Van der Kooij, H. (2007). Selective control of a subtask of walking in a robotic gait trainer(LOPES). Proceedings of the IEEE international conference on rehabilitation robotics (pp. 841–848).
Zurück zum Zitat Veneman, J., Ekkelenkamp, R., Kruidhof, R., Van der Helm, F., & Van der Kooij, H. (2005). Design of a series elastic- and Bowden cable-based actuation system for use as torque-actuator in exoskeleton-type training. In Proceedings of the IEEE international conference on rehabilitation robotics (pp. 496–499). Veneman, J., Ekkelenkamp, R., Kruidhof, R., Van der Helm, F., & Van der Kooij, H. (2005). Design of a series elastic- and Bowden cable-based actuation system for use as torque-actuator in exoskeleton-type training. In Proceedings of the IEEE international conference on rehabilitation robotics (pp. 496–499).
Zurück zum Zitat Walsh, C., Paluska, D., Pasch, K., Grand, W., Valiente, A., & Herr, H. (2006). Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In Proceedings IEEE international conference on robotics and automation ICRA 2006, May 15–19, Orlando, FL, USA (pp. 3485–3491). Walsh, C., Paluska, D., Pasch, K., Grand, W., Valiente, A., & Herr, H. (2006). Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In Proceedings IEEE international conference on robotics and automation ICRA 2006, May 15–19, Orlando, FL, USA (pp. 3485–3491).
Metadaten
Titel
An admittance shaping controller for exoskeleton assistance of the lower extremities
verfasst von
Gabriel Aguirre-Ollinger
Umashankar Nagarajan
Ambarish Goswami
Publikationsdatum
01.04.2016
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 4/2016
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-015-9490-8

Weitere Artikel der Ausgabe 4/2016

Autonomous Robots 4/2016 Zur Ausgabe

Neuer Inhalt