Skip to main content
Log in

Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Presented herein is an updated model for empirical prediction of 5 %-damped elastic response spectra in the period range 0–10 s, peak ground acceleration and velocity, based on a global dataset of digital acceleration records. The predictive model features saturation of the shaking parameters with both magnitude \(M_{W}\) and distance \(R_{ RUP }\), magnitude-dependent distance attenuation, alternative parameterisations of the amplification effects due to local site conditions (based either on ground types or \(V_{S,30}\)) and corrective terms for style-of-faulting. The calibration dataset comprises more than \(1{,}880\times 2\) orthogonal horizontal accelerometer records with \(R_{ RUP }< 150\) km from 98 global earthquakes with \(4.5\le M_{W}\le 7.9\). The processing technique applied to the acceleration data optimises the reliability of the predictions at long periods, as required by displacement-based design techniques. Developed independently of the recent NGA-West2 and RESORCE-based models, the new predictive tool effectively contributes to capturing the epistemic uncertainties associated with the prediction of seismic shaking levels for engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aki K, Richards PG (2009) Quantitative seismology, 2nd edn. University Science Books, Sausalito

  • Akkar S, Bommer JJ (2006) Influence of long-period filter cut-off on elastic spectral displacements. Earthq Eng Struct Dyn 35:1145–1165. doi:10.1002/eqe.577

    Article  Google Scholar 

  • Akkar S, Sandıkkaya MA, Şenyurt M et al (2014a) Reference database for seismic ground-motion in Europe (RESORCE). Bull Earthq Eng 12:311–339. doi:10.1007/s10518-013-9506-8

    Article  Google Scholar 

  • Akkar S, Sandıkkaya MA, Bommer JJ (2014b) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12:359–387. doi:10.1007/s10518-013-9461-4

    Article  Google Scholar 

  • Akkar S, Sandıkkaya MA, Ay BÖ (2014c) Compatible ground-motion prediction equations for damping scaling factors and vertical-to-horizontal spectral amplitude ratios for the broader Europe region. Bull Earthq Eng 12:517–547. doi:10.1007/s10518-013-9537-1

    Article  Google Scholar 

  • Ancheta TD, Darragh RB, Stewart JP et al (2014) NGA-West 2 database. Earthq Spectra 140514111412006. doi:10.1193/070913EQS197M

  • Atzori S, Merryman Boncori JP, Pezzo G, Tolomei C, Salvi S (2012) Secondo report analisi dati SAR e modellazione della sorgente del terremoto dell’Emilia. www.mi.ingv.it

  • Bindi D, Massa M, Luzi L et al (2014) Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull Earthq Eng 12:391–430. doi:10.1007/s10518-013-9525-5

    Article  Google Scholar 

  • Bommer JJ, Akkar S (2012) Consistent source-to-site distance metrics in ground-motion prediction equations and seismic source models for PSHA. Earthq Spectra 28:1–15

    Article  Google Scholar 

  • Bommer JJ, Douglas J, Strasser FO (2003) Style-of-faulting in ground-motion prediction equations. Bull Earthq Eng 1:171–203. doi:10.1023/A:1026323123154

    Article  Google Scholar 

  • Boore DM (2004) Estimating s(30) (or NEHRP site classes) from shallow velocity models (depths \({<}\)30 m). Bull Seismol Soc Am 94:591–597. doi:10.1785/0120030105

  • Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24:99. doi:10.1193/1.2830434

    Article  Google Scholar 

  • Boore DM, Thompson EM, Cadet H (2011) Regional correlations of VS30 and velocities sveraged over depths less than and greater than 30 meters. Bull Seismol Soc Am 101:3046–3059. doi:10.1785/0120110071

    Article  Google Scholar 

  • Boore DM, Stewart JP, Seyhan E, Atkinson GM (2014) NGA-West 2 equations for predicting PGA, PGV, and 5 %-Damped PSA for shallow crustal earthquakes. Earthq Spectra 131108093828003. doi:10.1193/070113EQS184M

  • Bora SS, Scherbaum F, Kuehn N, Stafford P (2014) Fourier spectral- and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions. Bull Earthq Eng 12:467–493. doi:10.1007/s10518-013-9482-z

    Article  Google Scholar 

  • Bormann P (ed) (2012) New manual of seismological observatory practice (NMSOP-2), IASPEI, GFZ German Research Centre for Geosciences, Potsdam. http://nmsop.gfz-potsdam.de. doi:10.2312/GFZ.NMSOP-2

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009. doi:10.1029/JB075i026p04997

    Article  Google Scholar 

  • Cauzzi (2008) Broadband empirical prediction of displacement response spectra based on worldwide digital records. Ph.D. thesis. Politecnico di Milano

  • Cauzzi C, Clinton J (2013) A high- and low-noise model for high-quality strong-motion accelerometer stations. Earthq Spectra 29:85–102. doi:10.1193/1.4000107

    Article  Google Scholar 

  • Cauzzi C, Faccioli E (2008) Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. J Seismol 12:453–475. doi:10.1007/s10950-008-9098-y

    Article  Google Scholar 

  • Cauzzi C, Faccioli E, Paolucci R, Villani M (2008) Long-period ground motion evaluation from a large worldwide digital strong motion database. In: Proceedings of the 14th WCEE, Beijing, China, paper S10–047

  • Cauzzi C, Faccioli E, Poggi V, Faeh D, Edwards B (2011) Prediction of long-period displacement response spectra for low-to-moderate seismicity regions. Merging the Swiss waveform archive with a global fully digital strong-motion dataset. In: Proceedings of the ESG4, UCSB

  • Comité Européen de Normalisation (CEN) (2004). Eurocode 8, Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard NF EN 1998-1, Brussels

  • Deichmann N, Baer M, Braunmiller J et al (2006) Earthquakes in Switzerland and surrounding regions during 2005. Eclogae Geol Helv 99:443–452. doi:10.1007/s00015-006-1201-1

    Article  Google Scholar 

  • Delavaud E, Cotton F, Akkar S et al (2012) Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. J Seismol 16:451–473. doi:10.1007/s10950-012-9281-z

    Article  Google Scholar 

  • Di Alessandro C, Bonilla LF, Boore DM et al (2012) Predominant-period site classification for response spectra prediction equations in Italy. Bull Seismol Soc Am 102:680–695. doi:10.1785/0120110084

  • Donahue J, Abrahamson N (2014) Simulation-based hanging-wall effects. Earthq Spectra 140609063716004: doi:10.1193/071113EQS200M

  • Douglas J, Akkar S, Ameri G et al (2014) Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bull Earthq Eng 12:341–358. doi:10.1007/s10518-013-9522-8

    Article  Google Scholar 

  • Edwards B, Fah D (2013) A stochastic ground-motion model for Switzerland. Bull Seismol Soc Am 103:78–98. doi:10.1785/0120110331

    Article  Google Scholar 

  • Faccioli E, Paolucci R, Rey J (2004) Displacement spectra for long periods. Earthq Spectra 20:347–376. doi:10.1193/1.1707022

    Article  Google Scholar 

  • Faccioli E, Cauzzi C, Paolucci R et al (2007) Long period strong ground motion and its use as input to displacement based design. In: Pitilakis K (ed) Earthquake geotechnical engineering, 4th international conference on earthquake geotechnical engineering-invited lectures, Springer, pp 23–51. doi:10.1007/978-1-4020-5893-6

  • Faccioli E, Villani M, Vanini M, Cauzzi C et al (2010a) Mapping seismic hazard for the needs ofdisplacement-based design: The case of Italy. In: Fardis MN (ed) Advances in performance-based earthquake engineering, vol 13. Dordrecht: Springer Netherlands, pp 3–14. doi:10.1007/978-90-481-8746-1

  • Faccioli E, Bianchini A, Villani M (2010b) New ground motion prediction equations for T > 1s and their influence on seismic hazard assessment. In: Koketsu K (ed) Proceedings of the University of Tokyo symposium on long-period ground motion and urban disaster mitigation, Mar 17–18, 2010, Tokyo, Japan

  • Fukushima Y, Tanaka T (1990) A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan. Bull Seismol Soc Am 80:757–783

    Google Scholar 

  • Gallovič F, Zahradník J (2012) Complexity of the Mw 6.3 2009 L’Aquila (central Italy) earthquake: 1. multiple finite-extent source inversion. J Geophys Res 117:B04307. doi:10.1029/2011JB008709

    Google Scholar 

  • Ghasemi H, Kamalian N, Hamzeloo H (2006) Stochastic finite-fault simulation for the 2002 Changureh-Avaj earthquake, NW Iran. J Earth Space Phys 32:25–35

    Google Scholar 

  • Ghasemi H, Zare M, Fukushima Y (2008) Ranking of several ground-motion models for seismic hazard analysis in Iran. J Geophys Eng 5:301–310

    Article  Google Scholar 

  • Graizer V, Dreger D (2004) Seismological implications of the ground motion data from the 2003 San Simeon earthquake. In: SMIP04 seminar proceedings

  • Graves RW, Aagaard BT, Hudnut KW (2011) The shakeout earthquake source and ground motion simulations. Earthq Spectra 27:273–291. doi:10.1193/1.3570677

    Article  Google Scholar 

  • Horikawa H (2001) Earthquake doublet in Kagoshima, Japan: rupture of asperities in a stress shadow. Bull Seismol Soc Am 91:112–127

    Article  Google Scholar 

  • Ide S (1999) Source process of the 1997 Yamaguchi, Japan, earthquake analyzed in different frequency bands. Geophys Res Lett 26:1973–1976

    Article  Google Scholar 

  • Iio Y, Shibutania T, Matsumotob S et al (2009) Precise aftershock distribution of the 2004 Mid-Niigata prefecture earthquake—implication for a very weak region in the lower crust. Phys Earth Planet Inter 172:345–352

    Article  Google Scholar 

  • Joyner WB, Boore DM (1981) Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake. Bull Seismol Soc Am 71:2011–2038

    Google Scholar 

  • Joyner WB, Boore DM (1993) Methods for regression analysis of strong-motion data. Bull Seismol Soc Am 83:469–487

    Google Scholar 

  • Joyner WB, Boore DM (1994) Errata: methods for regression analysis of strong-motion data. Bull Seismol Soc Am 84:955–956

    Google Scholar 

  • Joyner WB, Warrik RE, Fumal TE (1981) The effect of quaternary alluvium on strong ground motion in the Coyote Lake, California, earthquake of 1979. Bull Seismol Soc Am 71:1333–1349

    Google Scholar 

  • Kanno T (2006) A new attenuation relation for strong ground motion in Japan based on recorded data. Bull Seismol Soc Am 96:879–897. doi:10.1785/0120050138

    Article  Google Scholar 

  • Koketsu K, Miyake H (2008) A seismological overview of long-period ground motion. J Seismol 12:133–143. doi:10.1007/s10950-007-9080-0

    Article  Google Scholar 

  • Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66:639–666

    Google Scholar 

  • Milkereit C, Grosser H, Wang R et al (2004) Implications of the 2003 Bingol Earthquake for the interaction between the North and East Anatolian faults. Bull Seismol Soc Am 94:2400–2406

    Article  Google Scholar 

  • Nicknam A, Eslamian Y, Bozorgnasab M, Nicknam A, (2007) Modification of seismological parameters of Zarand earthquake (2005 February 22), in central Iran, Using Empirical Green’s function method. The 2007 Australian Earthq Eng Soc Int Conf of Earthquake-Engineering, Wollongong, Australia

  • Nishimura T, Imakiire T, Yarai H et al (2003) A preliminary fault model of the 2003 July 26, M6.4 northern Miyagi earthquake, northeastern Japan, estimated from joint inversion of GPS, leveling, and InSAR data. Earth Planets Space 55:751–757

    Article  Google Scholar 

  • Paolucci R, Rovelli A, Faccioli E et al (2008) On the reliability of long-period response spectral ordinates from digital accelerograms. Earthq Eng Struct Dyn 37:697–710. doi:10.1002/eqe.781

    Article  Google Scholar 

  • Paolucci R, Cauzzi C, Faccioli E et al (2011) Comment on “Statistical features of short-period and long-period near-source ground motions” by Masumi Yamada, Anna H. Olsen, and Thomas H. Heaton. Bull Seismol Soc Am 101:915–918. doi:10.1785/0120100092

    Article  Google Scholar 

  • Pezzo G, Merryman Boncori JP et al (2013) Coseismic deformation and source modeling of the May 2012 Emilia (Northern Italy) earthquakes. Seismol Res Lett 84:645–655. doi:10.1785/0220120171

    Article  Google Scholar 

  • Priestley MJN, Calvi GM, Kowalsky MJ (2007) Displacement-based seismic design of structures. IUSS, Pavia

    Google Scholar 

  • Rezaeian S, Bozorgnia Y, Idriss IM et al (2014) Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: “average” horizontal component. Earthq Spectra 30(2):939–963. doi:10.1193/100512EQS298M

    Article  Google Scholar 

  • Rodriguez-Marek A, Cotton F, Abrahamson NA et al (2013) A model for single-station standard deviation using data from various tectonic regions. Bull Seismol Soc Am 103:3149–3163. doi:10.1785/0120130030

    Article  Google Scholar 

  • Sandıkkaya MA, Akkar S, Bard P-Y (2013) A nonlinear site amplification model for the new pan-European ground-motion prediction equations. Bull Seismol Soc Am 103:19–32

    Article  Google Scholar 

  • Smerzini C, Galasso C, Iervolino I, Paolucci R (2013) Ground motion record selection based on broadband spectral compatibility. Earthq Spectra 140514111412006: doi:10.1193/052312EQS197M

  • Spudich P, Rowshandel B, Shahi S et al (2014) Comparison of NGA-West2 directivity models. Earthq Spectra 140609063716004. doi:10.1193/080313EQS222M

  • Syracuse EM, Thurber CH, Rawles CJ et al (2013) High-resolution relocation of aftershocks of the Mw7.1 Darfield, New Zealand, earthquake and implications for fault activity. J Geophys Res Solid Earth 118:1–12

    Article  Google Scholar 

  • Tabuchi H, Harada T, Ishibashi K (2008) A southeasterly-dipping static fault model of the 2007. Niigata-ken Chuetsu-oki, Japan, earthquake based on crustal movements, tsunamis, aftershock distribution and neotectonics. Kobe University Research Center for Urban Safety and Security—research report, no. 12

  • Walling M, Silva W, Abrahamson NA (2008) Nonlinear site amplification factors for constraining the NGA models. Earthq Spectra 24:243–255

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Yamada M, Olsen AH, Heaton TH (2009) Statistical features of short-period and long-period near-source ground motions. Bull Seismol Soc Am 99:3264–3274. doi:10.1785/0120090067

    Article  Google Scholar 

  • Yamada M, Olsen AH, Heaton TH (2011) Reply to “Comment on ‘Statistical features of short-period and long-period near-source ground motions’ by Masumi Yamada, Anna H. Olsen, and Thomas H. Heaton” by Roberto Paolucci, Carlo Cauzzi, Ezio Faccioli, Marco Stupazzini, and Manuela Villani. Bull Seismol Soc Am 101:919–924. doi:10.1785/0120100210

    Article  Google Scholar 

  • Yenier E, Sandıkkaya MA, Akkar S (2010) Report on the fundamental features of the extended strong motion databank prepared for the SHARE project. Deliverable 4.1 of seventh framework programme project seismic hazard harmonization in Europe (SHARE), Ankara

  • Yoshida S, Seta G, Okubo S, Kobayashi S (1999) Absolute gravity change associated with the March 1997 earthquake swarm in the Izu Peninsula, Japan. Earth Planets Space 51:3–12

    Article  Google Scholar 

  • Zeng Y, Chen C-H (2001) Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, Earthquake. Bull Seismol Soc Am 91(5):1088–1098

  • Zhao JX (2006) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96:898–913. doi:10.1785/0120050122

    Article  Google Scholar 

Download references

Acknowledgments

All the sources of our data and metadata are gratefully acknowledged, along with the many people (in particular Roberto Paolucci, Raffaele Figini and Manuela Villani) who partially contributed to the development of this work within the last years. The work presented in this paper was partly motivated by the ongoing SeIsmic Ground Motion Assessment (SIGMA) Project. We are thankful to John Douglas and two anonymous colleagues for reviewing the original manuscript and for providing useful suggestions for improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cauzzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 101 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cauzzi, C., Faccioli, E., Vanini, M. et al. Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthquake Eng 13, 1587–1612 (2015). https://doi.org/10.1007/s10518-014-9685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-014-9685-y

Keywords

Navigation