Skip to main content

Advertisement

Log in

Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16INK-4A

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Skin cancers and extrinsic aging are delayed consequences of cumulative UV radiation insults. Exposure of human keratinocytes to UVB has been previously shown to trigger premature senescence. In order to explore the involvement of the cyclin-dependent kinase inhibitor p16INK-4a in UVB-induced premature senescence, we developed an original model of repeated sublethal exposures of human keratinocytes deficient in p16INK-4a. We did not observe any significant increase of senescence-associated β-galactosidase activity positive cells following UVB exposure in this cell line in contrast to primary keratinocytes, suggesting a role for p16INK-4a in UVB-induced senescence. However, we detected sustained DNA damage, prolonged cell cycle arrest, and induction of markers of epidermal differentiation like involucrin and filaggrin as consequences of the repeated exposures. Keratinocytes exposed to the same dose of UVB in a single exposure died. Furthermore, the abundance of the keratins 6, 16 and 17 was increased in keratinocytes exposed repeatedly to UVB suggesting an alternative differentiation. This model allows the induction of a state of differentiation observed in vivo with differentiation uncoupled from premature senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CPDs:

Cyclobutane pyrimidine dimers

K:

Cytokeratin

ROS:

Reactive oxygen species

SA β-gal:

Senescence-associated β-galactosidase activity

UVB:

Ultraviolet B

References

  • Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222

    Article  CAS  PubMed  Google Scholar 

  • Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    Article  CAS  PubMed  Google Scholar 

  • Berge U, Kristensen P, Rattan SI (2008) Hormetic modulation of differentiation of normal human epidermal keratinocytes undergoing replicative senescence in vitro. Exp Gerontol 43:658–662

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579:859–862

    Article  CAS  PubMed  Google Scholar 

  • Bousquet O, Coulombe PA (2002) Les kératines: un autre regard sur la biologie de la peau. Medecine/Sciences 18:45–54

    Google Scholar 

  • Bulteau AL, Moreau M, Nizard C, Friguet B (2002) Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes. Free Radic Biol Med 32:1157–1170

    Article  CAS  PubMed  Google Scholar 

  • Carlen LM, Sanchez F, Bergman AC, Becker S, Hirschberg D, Franzen B, Coffey J, Jornvall H, Auer G, Alaiya AA, Stahle M (2005) Proteome analysis of skin distinguishes acute guttate from chronic plaque psoriasis. J Invest Dermatol 124:63–69

    Article  CAS  PubMed  Google Scholar 

  • Cuddihy AR, Bristow RG (2004) The p53 protein family and radiation sensitivity: yes or no? Cancer Metastasis Rev 23:237–257

    Article  CAS  PubMed  Google Scholar 

  • Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  CAS  PubMed  Google Scholar 

  • de Magalhaes JP, Chainiaux F, Remacle J, Toussaint O (2002) Stress-induced premature senescence in BJ and hTERT-BJ1 human foreskin fibroblasts. FEBS Lett 523:157–162

    Article  PubMed  Google Scholar 

  • de Winter S, Vink AA, Roza L, Pavel S (2001) Solar-simulated skin adaptation and its effect on subsequent UV-induced epidermal DNA damage. J Invest Dermatol 117:678–682

    Article  PubMed  Google Scholar 

  • Debacq-Chainiaux F, Pascal T, Boilan E, Bastin C, Bauwens E, Toussaint O (2008) Screening of senescence-associated genes with specific DNA array reveals the role of IGFBP-3 in premature senescence of human diploid fibroblasts. Free Radic Biol Med 44:1817–1832

    Article  CAS  PubMed  Google Scholar 

  • Decraene D, Smaers K, Maes D, Matsui M, Declercq L, Garmyn M (2005) A low UVB dose, with the potential to trigger a protective p53-dependent gene program, increases the resilience of keratinocytes against future UVB insults. J Invest Dermatol 125:1026–1031

    CAS  PubMed  Google Scholar 

  • Del Bino S, Vioux C, Rossio-Pasquier P, Jomard A, Demarchez M, Asselineau D, Bernerd F (2004) Ultraviolet B induces hyperproliferation and modification of epidermal differentiation in normal human skin grafted on to nude mice. Br J Dermatol 150:658–667

    Article  CAS  PubMed  Google Scholar 

  • Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP, Rheinwald JG (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20:1436–1447

    Article  CAS  PubMed  Google Scholar 

  • Dierick J-F, Frippiat Salmon, Chainiaux Toussaint (2003) Cells, stress and tissue ageing. In: Osiewacz HD (ed) Modulating aging and longevity. Kluwer, Amsterdam, pp 101–125

    Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  PubMed  Google Scholar 

  • Dumont P, Burton M, Chen QM, Gonos ES, Frippiat C, Mazarati JB, Eliaers F, Remacle J, Toussaint O (2000) Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 28:361–373

    Article  CAS  PubMed  Google Scholar 

  • Dumont P, Royer V, Pascal T, Dierick JF, Chainiaux F, Frippiat C, de Magalhaes JP, Eliaers F, Remacle J, Toussaint O (2001) Growth kinetics rather than stress accelerate telomere shortening in cultures of human diploid fibroblasts in oxidative stress-induced premature senescence. FEBS Lett 502:109–112

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL, Crish JF, Robinson NA (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev 77:397–424

    CAS  PubMed  Google Scholar 

  • Freedberg IM, Tomic-Canic M, Komine M, Blumenberg M (2001) Keratins and the keratinocyte activation cycle. J Invest Dermatol 116:633–640

    Article  CAS  PubMed  Google Scholar 

  • Friguet B (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 580:2910–2916

    Article  CAS  PubMed  Google Scholar 

  • Gandarillas A (2000) Epidermal differentiation, apoptosis, and senescence: common pathways? Exp Gerontol 35:53–62

    Article  CAS  PubMed  Google Scholar 

  • Gazel A, Ramphal P, Rosdy M, De Wever B, Tornier C, Hosein N, Lee B, Tomic-Canic M, Blumenberg M (2003) Transcriptional profiling of epidermal keratinocytes: comparison of genes expressed in skin, cultured keratinocytes, and reconstituted epidermis, using large DNA microarrays. J Invest Dermatol 121:1459–1468

    Article  CAS  PubMed  Google Scholar 

  • Gorbunova V, Seluanov A, Pereira-Smith OM (2002) Expression of human telomerase (hTERT) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 277:38540–38549

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  Google Scholar 

  • Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T (2003) UV-induced skin damage. Toxicology 189:21–39

    Article  CAS  PubMed  Google Scholar 

  • Jiang CK, Flanagan S, Ohtsuki M, Shuai K, Freedberg IM, Blumenberg M (1994) Disease-activated transcription factor: allergic reactions in human skin cause nuclear translocation of STAT-91 and induce synthesis of keratin K17. Mol Cell Biol 14:4759–4769

    CAS  PubMed  Google Scholar 

  • Komine M, Freedberg IM, Blumenberg M (1996) Regulation of epidermal expression of keratin K17 in inflammatory skin diseases. J Invest Dermatol 107:569–575

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, An HT, Chung JH, Kim KH, Eun HC, Cho KH (2002) Acute effects of UVB radiation on the proliferation and differentiation of keratinocytes. Photodermatol Photoimmunol Photomed 18:253–261

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Yi Q, Travers JB, Spandau DF (2008) UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol Biol Cell 19:1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Li D, Turi TG, Schuck A, Freedberg IM, Khitrov G, Blumenberg M (2001) Rays and arrays: the transcriptional program in the response of human epidermal keratinocytes to UVB illumination. FASEB J 15:2533–2535

    CAS  PubMed  Google Scholar 

  • Matuoka K, Chen KY (2002) Telomerase positive human diploid fibroblasts are resistant to replicative senescence but not premature senescence induced by chemical reagents. Biogerontology 3:365–372

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Nishioka K (2003) Enhanced expression of p16 in seborrhoeic keratosis; a lesion of accumulated senescent epidermal cells in G1 arrest. Br J Dermatol 149:560–565

    Article  CAS  PubMed  Google Scholar 

  • Paladini RD, Takahashi K, Bravo NS, Coulombe PA (1996) Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J Cell Biol 132:381–397

    Article  CAS  PubMed  Google Scholar 

  • Petropoulos I, Conconi M, Wang X, Hoenel B, Bregegere F, Milner Y, Friguet B (2000) Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 55:B220–B227

    CAS  PubMed  Google Scholar 

  • Poumay Y, Pittelkow MR (1995) Cell density and culture factors regulate keratinocyte commitment to differentiation and expression of suprabasal K1/K10 keratins. J Invest Dermatol 104:271–276

    Article  CAS  PubMed  Google Scholar 

  • Rabe JH, Mamelak AJ, McElgunn PJ, Morison WL, Sauder DN (2006) Photoaging: mechanisms and repair. J Am Acad Dermatol 55:1–19

    Article  PubMed  Google Scholar 

  • Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW, Wright WE (2001) Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 15:398–403

    Article  CAS  PubMed  Google Scholar 

  • Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Durr P, Wlaschek M (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5:379–389

    Article  CAS  PubMed  Google Scholar 

  • Rittie L, Fisher GJ (2002) UV-light-induced signal cascades and skin aging. Ageing Res Rev 1:705–720

    Article  CAS  PubMed  Google Scholar 

  • Sano T, Kume T, Fujimura T, Kawada H, Higuchi K, Iwamura M, Hotta M, Kitahara T, Takema Y (2009) Long-term alteration in the expression of keratins 6 and 16 in the epidermis of mice after chronic UVB exposure. Arch Dermatol Res 301:227–237

    Article  CAS  PubMed  Google Scholar 

  • Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta 1775:5–20

    CAS  PubMed  Google Scholar 

  • Stoler A, Kopan R, Duvic M, Fuchs E (1988) Use of monospecific antisera and cRNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation. J Cell Biol 107:427–446

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Folmer J, Coulombe PA (1994) Increased expression of keratin 16 causes anomalies in cytoarchitecture and keratinization in transgenic mouse skin. J Cell Biol 127:505–520

    Article  CAS  PubMed  Google Scholar 

  • Toussaint O, Remacle J, Dierick JF, Pascal T, Frippiat C, Royer V, Magalhacs JP, Zdanov S, Chainiaux F (2002) Stress-induced premature senescence: from biomarkers to likeliness of in vivo occurrence. Biogerontology 3:13–17

    Article  CAS  PubMed  Google Scholar 

  • Weiss RA, Eichner R, Sun TT (1984) Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol 98:1397–1406

    Article  CAS  PubMed  Google Scholar 

  • Wong P, Coulombe PA (2003) Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J Cell Biol 163:327–337

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

VV is Recipient of a FRIA fellowship. FDC and OT are respectively Post-Doctoral Researcher and Research Associate of the Belgian F·N.R.S. This work received financial support through FRFC Grant 2.4506.01 (Belgium) to YP and OT. We acknowledge the Région Wallonne/FSE for the First-Europe project ‘CosmUV’, the First-DEI project ‘Cosmet-X’, and the ‘Réseaux II Senegene’ and ‘Nanotoxico’ projects. We also thank the European Commission for the Integrated Projects ‘Proteomage’ (LSHM-CT-2005-518230); Coordination Action Link-Age (LSHM-CT-2005-513866); and ‘Matiss’ Marie Curie Project (MTKI-CT-2006–042768).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Toussaint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand-Vallery, V., Boilan, E., Ninane, N. et al. Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16INK-4A . Biogerontology 11, 167–181 (2010). https://doi.org/10.1007/s10522-009-9238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-009-9238-y

Keywords

Navigation