Skip to main content

Advertisement

Log in

Alien arthropod predators and parasitoids: interactions with the environment

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Many species of entomophagous arthropods have been introduced either intentionally (through the practice of biological control) or unintentionally to new regions. We examine interactions of these aliens with their new environments in the context of rapid global change linked to human activity. We consider effects of such interactions on establishment and spread of the alien species and effects on indigenous biota and ecosystems. Major elements of global change that affect alien-environment interactions include landscape modifications by humans (e.g., cultivation, habitat loss and fragmentation) and increases in atmospheric CO2 and other gases resulting in climate change and other effects (e.g., changes in food quality for herbivores that affect higher trophic levels as well). Alien arthropod predators can alter landscapes for their benefit, to the detriment of indigenous species. A brief review also of blood-feeding alien arthropods makes clear that interactions with the environment critically influence invasions of zoophagous arthropods in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott K (2005) Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island: forager activity patterns, density and biomass. Insect Soc 52:266–273

    Article  Google Scholar 

  • Altermatt F (2010) Climatic warming increases voltinism in European butterflies and moths. Proc R Soc B 277:1281–1287

    Article  PubMed  Google Scholar 

  • Attrill M, Thomas RM (1996) Long-term distribution patterns of mobile estuarine invertebrates (Ctenophora, Cnidaria, Crustacea: Decapoda) in relation to hydrological parameters. Mar Ecol Prog Ser 146:25–36

    Article  Google Scholar 

  • Aukema B, Loomans A (2005) Orius laevigatus in the Netherlands (Heteroptera, Anthocoridae). Ned Faun Meded 23:125–127

    Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity, and natural pest control. Proc R Soc B 273:1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn T, Jeschke JM (2009) Invasion success and threat status: two sides of a different coin? Ecography 32:83–88

    Article  Google Scholar 

  • Bolger DT, Suarez AV, Crooks KR, Morrison SA, Case TJ (2000) Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol Appl 10:1230–1248

    Article  Google Scholar 

  • Bolger DT, Beard KH, Suarez A, Case TJ (2008) Increased abundance of native and non-native spiders with habitat fragmentation. Divers Distrib 14:655–665

    Article  Google Scholar 

  • Bond W, Slingsby P (1984) Collapse of an ant–plant mutualism–the Argentine ant (Iridomyrmex humulis) and myrmecochorous Proteaceae. Ecology 65:1031–1037

    Article  Google Scholar 

  • Brown MW, Miller SS (1998) Coccinellidae (Coleoptera) in apple orchards of eastern West Virginia and the impact of invasion by Harmonia axyridis. Entomol News 109:136–142

    Google Scholar 

  • Burger JC, Patten MA, Prentice TR, Redak RA (2001) Evidence for spider community resilience to invasion by non-native spiders. Biol Conserv 98:241–249

    Article  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Science 330:192–196

    Article  CAS  PubMed  Google Scholar 

  • Carney SE, Byerley MB, Holway DA (2003) Invasive Argentine ants (Linepithema humile) do not replace native ants as seed dispersers of Dendromecon rigida (Papaveraceae) in California, USA. Oecologia 135:576–582

    Article  PubMed  Google Scholar 

  • Chen Y, Olson DM, Ruberson JR (2010) Effects of nitrogen fertilization on tritrophic interactions. Arthropod–Plant Interact 4:81–94

    Article  CAS  Google Scholar 

  • Christian CE (2001) Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 413:635–639

    Article  CAS  PubMed  Google Scholar 

  • Clark PF, Rainbow PS, Robbins RS, Smith B, Yeomans WE, Thomas M, Dobson G (1998) The alien Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda: Brachyura), in the Thames catchment. J Mar Biol Assoc UK 78:1215–1221

    Article  Google Scholar 

  • Cornelisse TM, Hafernik JE (2009) Effects of soil characteristics and human disturbance on tiger beetle oviposition. Ecol Entomol 34:495–503

    Article  Google Scholar 

  • DAISIE (2009) Handbook of alien species in Europe. Springer, Heidelberg

  • Dana ED, López-Santiago J, García-de-Lomas J, García-Ocaña DM, Gámez V, Ortega F (2010) Long-term management of the invasive Pacifastacus leniusculus (Dana, 1852) in a small mountain stream. Aquat Invasions 5:317–322

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invisibility. J Ecol 88:528–534

    Article  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355

    Article  Google Scholar 

  • Dermody O, O’Neill BF, Zangerl AR, Berenbaum MR, DeLucia EH (2008) Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod–Plant Interact 2:125–135

    Article  Google Scholar 

  • Dias JC, Silveira AC, Schofield CJ (2002) The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz 97:603–612

    Article  CAS  PubMed  Google Scholar 

  • Didham RK, Lawton JH, Hammond PM, Eggleton P (1998) Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments. Phil Trans R Soc B 353:437–451

    Article  PubMed Central  Google Scholar 

  • Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interaction effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:409–496

    Article  Google Scholar 

  • Dixon AFG (2000) Insect predator–prey dynamics, Ladybird beetles and biological control. Cambridge University Press, Cambridge

    Google Scholar 

  • Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) (1989) Biological invasions: a global perspective. Wiley, Chichester

    Google Scholar 

  • Duelli P, Studer M, Marchand I, Jakob S (1990) Population movements of arthropods between natural and cultivated areas. Biol Conserv 54:193–207

    Article  Google Scholar 

  • Dukes JS (2011) Climate change. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 113–117

    Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  CAS  PubMed  Google Scholar 

  • Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 94:3274–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ECDC (2009) Development of Aedes albopictus risk maps. ECDC Technical Report, Stockholm

  • Elliott N, Kieckhefer R, Kauffman W (1996) Effects of an invading coccinellid on native coccinellids in an agricultural landscape. Oecologia 105:537–544

    Article  PubMed  Google Scholar 

  • Elton CS (1958) The Ecology of invasion by animals and plants. Methuen, London

    Book  Google Scholar 

  • Enserink M (2008) A mosquito goes global. Science 320:864–866

    Article  CAS  PubMed  Google Scholar 

  • Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, Kleinbauer I, Krausmann F, Kühn I, Nentwig W, Vilá M, Genovesi P, Gherardi F, Desprez-Loustau M-L, Roques A, Pyšek P (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci USA 108:203–207

    Article  CAS  PubMed  Google Scholar 

  • Evans EW (2000) Morphology of invasion: body size patterns associated with establishment of Coccinella septempunctata in western North America. Eur J Entomol 97:469–474

    Article  Google Scholar 

  • Evans EW (2004) Habitat displacement of native North American ladybirds by an introduced species. Ecology 85:637–647

    Article  Google Scholar 

  • Evans EW, Soares AO, Yasuda H (2011) Invasions by ladybugs, ladybirds, and other predatory beetles. BioControl. doi:10.1007/s10526-011-9374-6

  • Evans FC, Lanham UN (1960) Distortion of the pyramid of numbers in a grassland insect community. Science 131:1531–1532

    Article  CAS  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Forman RTT (1995) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasion. Ecology 88:3–17

    Article  CAS  PubMed  Google Scholar 

  • Gilbey V, Attrill M, Coleman RA (2008) Juvenile Chinese mitten crabs (Eriocheir sinensis) in the Thames estuary: distribution, movement and possible interactions with the native crab Carcinus maenas. Biol Invasions 10:67–77

    Article  Google Scholar 

  • Glinwood R, Ahmed E, Qvarfordt E, Ninkovic V, Pettersson J (2009) Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod–Plant Interact 3:215–224

    Article  Google Scholar 

  • Goddard J, deShazo R (2009) Bed bugs (Cimex lectularius) and clinical consequences of their bites. J Am Med Assoc 301:1358–1366

    Article  CAS  Google Scholar 

  • Green PT, Lake PS, O’Dowd DJ (1999) Monopolization of litter processing by a dominant land crab on a tropical oceanic island. Oecologia 119:435–444

    Article  PubMed  Google Scholar 

  • Hanson SM, Craig GB Jr (1995) Relationship between cold hardiness and supercooling point in Aedes albopictus eggs. J Am Mosq Control Assoc 11:35–38

    PubMed  Google Scholar 

  • Harding KC, McNamara JM, Holt RD (2006) Understanding invasions in patchy habitats through metapopulation theory. In: Cadotte MW, McMahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Invading nature, vol 1. Springer series in invasion ecology, Berlin, pp 371–403

  • Hart AJ, Tullett AG, Bale JS, Walters KFA (2002) Effects of temperature on the establishment potential in the UK of the non-native glasshouse biocontrol agent Macrolophus caliginosus. Physiol Entomol 27:112–123

    Article  Google Scholar 

  • Hatherly IS, Hart AJ, Tullett AG, Bale JS (2005) Use of thermal data as a screen for the establishment potential of non-native biological control agents in the UK. BioControl 50:687–698

    Article  Google Scholar 

  • Hawley WA, Reiter P, Copeland RS, Pumpuni CB, Craig GB Jr (1987) Aedes albopictus in North America: probable introduction in used tires from Northern Asia. Science 236:1114–1116

    Article  CAS  PubMed  Google Scholar 

  • Heller NE, Sanders NJ, Shors JW, Gordon DM (2008) Rainfall facilitates the spread, and time alters the impact, of the invasive Argentine ant. Oecologia 155:385–395

    Article  PubMed  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

    Article  PubMed  Google Scholar 

  • Henneman ML, Memmott J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293:1314–1316

    Article  CAS  PubMed  Google Scholar 

  • Herzog DC, Reagan TE, Sheppard DC, Hyde KM, Nilakhe SS, Hussein MYB, McMahan ML, Thomas RC, Newsom LD (1976) Solenopsis invicta Buren influence on Louisiana pasture soil chemistry (Hymenoptera-Formicidae). Environ Entomol 5:160–162

    Article  CAS  Google Scholar 

  • Hicks BJ, Aegerter JN, Leather SR, Watt AD (2007) Asynchrony in larval development of the pine beauty moth, Panolis flammea, on an introduced host plant may affect parasitoid efficacy. Arthropod–Plant Interact 1:213–220

    Article  Google Scholar 

  • Hillstrom ML, Lindroth RL (2008) Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition. Insect Conserv Diver 1:233–241

    Article  Google Scholar 

  • Holt RD (1996) Adaptive evolution in source–sink environments: direct and indirect effects of density-dependence on niche evolution. Oikos 75:182–192

    Article  Google Scholar 

  • Holway DA (1998) Factors governing rate of invasion: a natural experiment using Argentine ants. Oecologia 115:206–212

    Article  PubMed  Google Scholar 

  • Holway DA, Suarez AV, Case TJ (2002) Role of abiotic factors in governing susceptibility to invasion: a test with Argentine ants. Ecology 83:1610–1619

    Article  Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769–774

    Article  CAS  PubMed  Google Scholar 

  • Human KF, Gordon DM (1996) Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia 105:405–412

    Article  PubMed  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (AR4). Cambridge University Press, Cambridge

  • Jeschke JM, Strayer DL (2008) Are threat status and invasion success two sides of the same coin? Ecography 31:124–130

    Article  Google Scholar 

  • Johnsen SI, Taugbøl T (2010) Invasive alien species fact sheet—Pacifastacus leniusculus. From: online database of the North European and Baltic Network on invasive alien species—NOBANIS. http://www.nobanis.org. Accessed 24 Nov 2010

  • Kajita Y, Evans EW (2010) Alfalfa fields promote high reproductive rate of an invasive predatory lady beetle. Biol Invasions 12:2293–2302

    Article  Google Scholar 

  • Kareiva P (1987) Habitat fragmentation and the stability of predator–prey interactions. Nature 326:388–390

    Article  Google Scholar 

  • Kenis M, Roques A (2010) Lice and fleas (Phthiraptera and Siphonaptera). In: Roques A, Kenis M, Lees D, Lopez-Vaamonde C, Rabitsch W, Rasplus J-Y, Roy DB (eds) Alien terrestrial arthropods of Europe. BioRisk, vol 4. Pensoft Publishers, Sofia, Bulgaria, pp 833–849

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890

    Google Scholar 

  • Kobelt M, Nentwig W (2008) Alien spider introductions to Europe supported by global trade. Divers Distrib 14:273–280

    Article  Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264:1581–1584

    Article  CAS  PubMed  Google Scholar 

  • Kumschick S, Fronzek S, Schmidt-Entling MH, Nentwig W (2011) Rapid spread of the wasp spider Argiope bruennichi across Europe: a consequence of climate change? Climatic Change (in press)

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodá F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Labbé GM, Nimmo DD, Alphey L (2010) piggybac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse). PloS Negl Trop Dis 4(8):e788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JL, McKinney ML (2001) Biotic homogenization. Kluwer, New York

    Book  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Lopez-Vaamonde C, Glavendekić M, Paiva MR (2010) Invaded habitats. In: Roques A, Kenis M, Lees D, Lopez-Vaamonde C, Rabitsch W, Rasplus J-Y, Roy DB (eds) Alien terrestrial arthropods of Europe. BioRisk, vol 4. pp 45–50

  • MA (Millenium Ecosystem Assessment) (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington DC

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Harper & Row, New York

    Google Scholar 

  • Massad TJ, Dyer LA (2010) A meta-analysis of the effects of global environmental change on plant–herbivore interactions. Arthropod–Plant Interact 4:181–188

    Article  Google Scholar 

  • McKone MJ, McLauchlan KK, Lebrun EG, McCall AC (2001) An edge effect caused by adult corn-rootworm beetles on sunflowers in tallgrass prairie remnants. Conserv Biol 15:1315–1324

    Article  Google Scholar 

  • McMichael AJ (2003) Global climate change: will it affect vector-borne infectious diseases? Int Med J 33:554–555

    Article  CAS  Google Scholar 

  • Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecol Biogeogr 19:122–133

    Article  Google Scholar 

  • Meissner K, Juntunen A, Malmqvist B, Muotka T (2009) Predator–prey interactions in a variable environment: responses of a caddis larva and its blackfly prey to variations in stream flow. Ann Zool Fennici 46:193–204

    Article  Google Scholar 

  • Musolin DL (2007) Insects in a warmer world; ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Globa Chang Biol 13:1565–1585

    Article  Google Scholar 

  • Navajas M, Migeon A, Estrada-Peña A, Mailleux A-C, Servigne P, Petanović R (2010) Mites and ticks (Acari). In: Roques A, Kenis M, Lees D, Lopez-Vaamonde C, Rabitsch W, Rasplus J-Y, Roy DB (eds) Alien terrestrial arthropods of Europe. BioRisk, vol 4. Pensoft Publishers, Sofia, Bulgaria, pp 149–192

  • Nedved O, Pekar S, Bezdecka P, Liznarova E, Rezac M, Schmitt M, Sentenska L (2011) Ecology of Arachnida alien to Europe. BioControl. doi:10.1007/s10526-011-9385-3

  • Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Poyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979

    PubMed  Google Scholar 

  • O’Dowd DJ, Green PT, Lake PS (2003) Invasional ‘meltdown’ on an oceanic island. Ecol Lett 6:812–817

    Article  Google Scholar 

  • Ott J (2010) Monitoring climate change with dragonflies. BioRisk 5:1–286

    Article  Google Scholar 

  • Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407

    Article  CAS  PubMed  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  • Pyšek P, Jarošik V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau M-L, Nentwig W, Pergl J, Poboljšaj K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W, Vilá M, Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabitsch W (2010) Pathways and vectors of alien arthropods in Europe. In: Roques A, Kenis M, Lees D, Lopez-Vaamonde C, Rabitsch W, Rasplus J-Y, Roy DB (eds) Alien terrestrial arthropods of Europe. BioRisk, vol 4. Pensoft Publishers, Sofia, Bulgaria, pp 27–43

  • Rabitsch W (2011) The hitchhiker’s guide to alien ant invasions. BioControl. doi:10.1007/s10526-011-9370-x

  • Rand TA, Louda SM (2006) Spillover of agriculturally subsidized predators as a potential threat to native insect herbivores in fragmented landscapes. Conserv Biol 20:1720–1729

    Article  PubMed  Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    Article  PubMed  Google Scholar 

  • Reinhardt K, Siva-Jothy MT (2007) Biology of the bed bugs (Cimicidae). Annu Rev Entomol 52:351–374

    Article  CAS  PubMed  Google Scholar 

  • Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM, Carpintero S, Espadaler X, Gómez C, Guénard B, Hartley S, Krushelnycky P, Lester PJ, McGeoch MA, Menke SB, Pedersen JS, Pitt JPW, Reyes J, Sanders NJ, Suarez AV, Touyama Y, Ward D, Ward PS, Worner SP (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci USA 108:220–225

    Article  CAS  PubMed  Google Scholar 

  • Roy H, Roy DB, Roques A (2011) Inventory of alien arthropod predators and parasitoids established in Europe. BioControl. doi:10.1007/s10526-011-9355-9

  • Ryall KL, Fahrig L (2006) Response of predators to loss and fragmentation of prey habitat: a review of theory. Ecology 87:1086–1093

    Article  PubMed  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Nature 287:1770–1774

    CAS  Google Scholar 

  • Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115:14–21

    Article  PubMed  Google Scholar 

  • Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Kühn I, Moora M, Nielsen A, Ohlemüller R, Petanidou T, Potts SG, Pyšek P, Stout JC, Sykes MT, Tscheulin T, Vilá M, Walther GR, Westphal C, Winter M, Zobel M, Settele J (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85:777–795

    PubMed  Google Scholar 

  • Shea K, Chesson PL (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Sheppard SK, Henneman ML, Memmott J, Symondson WOC (2004) Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach. Mol Ecol 13:2077–2088

    Article  CAS  PubMed  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32

    Article  Google Scholar 

  • Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Son Y (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46

    Article  Google Scholar 

  • Suarez AV, Case TJ (2003) The ecological consequences of a fragmentation mediated invasion: the Argentine ant, Linepithema humile, in southern California. Ecol Stud 162:161–180

    Article  Google Scholar 

  • Suarez AV, Bolger DT, Case TJ (1998) Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79:2041–2056

    Article  Google Scholar 

  • Swift TL, Hannon SJ (2010) Critical thresholds associated with habitat loss: a review of the concepts, evidence and applications. Biol Rev 85:35–53

    Article  PubMed  Google Scholar 

  • Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien invasions? In: Nentwig W (ed) Biological invasions. Springer, Berlin, pp 197–211

    Chapter  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309

    Article  Google Scholar 

  • Turnock WJ, Wise IL, Matheson FO (2003) Abundance of some native coccinellines (Coleoptera: Coccinellidae) before and after the appearance of Coccinella septempunctata. Can Entomol 135:391–404

    Article  Google Scholar 

  • van Nouhuys S (2005) Effects of habitat fragmentation at different trophic levels in insect communities. Ann Zool Fennici 42:433–447

    Google Scholar 

  • Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilá M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693

    Article  PubMed  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. BioScience 48:607–615

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

  • With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24:803–815

    Article  PubMed  Google Scholar 

  • Zettler JA, Spira TP, Allen CR (2001) Ant-seed mutualisms: Can red imported fire ants sour the relationship? Biol Conserv 101:249–253

    Article  Google Scholar 

Download references

Acknowledgments

We thank Helen Roy, Remy Poland, Lori Lawson-Handley and Patrick De Clercq for inviting us to address this general topic, and two anonymous reviewers and editor P. De Clercq for offering helpful and insightful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward W. Evans.

Additional information

Handling Editor: Patrick De Clercq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, E.W., Comont, R.F. & Rabitsch, W. Alien arthropod predators and parasitoids: interactions with the environment. BioControl 56, 395–407 (2011). https://doi.org/10.1007/s10526-011-9375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-011-9375-5

Keywords

Navigation