Skip to main content
Log in

Allozyme Variability and Phylogenetic Relationships in Honey Bee (Hymenoptera: Apidae: Apis mellifera) Populations From Greece and Cyprus

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Ten gene enzymic systems (α-GPDH, AO, MDH, ADH, LAP, SOD, ALP, ACPH, ME, and EST), corresponding to 12 genetic loci, were assayed from five Greek populations representing three subspecies of Apis mellifera, A. m. cecropia (Pthiotida, Kythira), A. m. macedonica (Macedonia), and the “Aegean race” of A. mellifera, which is supposed to be very similar to A. m. adami (Ikaria, Kasos), as well as a population from Cypus (A. m. cypria). ADH-1, ADH-2, and LAP electrophoretic patterns discriminate the Cyprus population from the Greek populations. MDH-1, EST-3, SOD, ALP, and ME loci were found to be polymorphic in almost all populations. The observed heterozygosity was found to range from 0.066 to 0.251. Allele frequencies of all loci were used to estimate Nei's genetic distance, which was found to range between 0.011 and 0.413 among the populations studied. UPGMA and neighbor-joining phylogenetic trees obtained by genetic distance matrix methods, as well as a Wagner tree based on the discrete character parsimony method, support the hypothesis that the most distant population is that from Cyprus. Our allozymic data support A. m. cypria as a distinct subspecies, but there was no allozymic support for the distinction of the other subspecies existing in Greece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alahiotis, S. N., and Berger, E. (1977). Isozyme and allozyme patterns in embryonic Drosophila cell culture lines. Biochem. Genet. 15:877–883.

    Article  PubMed  CAS  Google Scholar 

  • Ashton, G. C., and Braden, A. W. H. (1961). Serum β-globulin polymorphism in mice. Austr. J. Exp. Biol. Med. Sci. 14:228.

    Google Scholar 

  • Avise, J. C. (1994). Molecular Markers, Natural History and Evolution, Chapman and Hall, New York.

    Google Scholar 

  • Ayala, F. J., Powell, J. R.,. Tracey, M. L., Mourao, C. A., and Perez-Salas, S. (1972). Enzyme variability in the Drosophila willistoni group IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70:113–139.

  • Badino, G., Celebrano, G., Manino, A., and Ifantidis, M. D. (1988). Allozyme variability in Greek honeybees (Apis mellifera L.). Apidologie 19(4):377–386.

    Google Scholar 

  • Berlocher, S. H. (1980). An electrophoretic key for distinguishing species of the genus Rhagoletis (Diptera: Tephritidae) as larvae, pupae, or adults. Ann. Entomol. Soc. Am. 73:131–137.

    CAS  Google Scholar 

  • Bernatchez, L., and Osinov, A. (1995). Genetic diversity of trout (genus Salmo) from its most eastern native range based on mitochondrial DNA and nuclear gene variation. Mol. Ecol. 4:285–297.

    PubMed  CAS  Google Scholar 

  • Bouga, M., Harizanis, P. C., Kilias, G., and Alahiotis, S. (2005). Genetic divergence and phylogenetic relationships of honey bee A. mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR-RFLP analysis of three mtDNA segments. Apidologie 36:335–344.

    Article  CAS  Google Scholar 

  • Buth, D. G., and Murphy, R. W. (1999). The use of isozyme characters in systematic studies. Biochem. Syst. Ecol. 27:117–129.

    CAS  Google Scholar 

  • Cornuet, J. M. (1979). The MDH system in honeybees of Guadeloup. J. Hered. 70:223–224.

    CAS  Google Scholar 

  • Daly, H. V. (1991). Systematics and identification of Africanized honey bees, In Spivak, M., Fletcher, D. J. C., and Breed, M. D. (eds.), The “African” Honey Bee, Westview Press, Boulder, Colorado, pp. 13–44.

  • Dedej, S., Basiolo, A., and Piva, R. (1996). Morphometric and alloenzymatic characterisation in the Albanian honeybee population Apis mellifera L. Apidologie 27(3):121–131.

    Google Scholar 

  • Estoup, A., Garnery, L., Solignac, M., and Cornuet, J. M. (1995). Microsatellite variation in honey bee (Apis mellifera L.) populations: Hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140:679–695.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4):783–791.

    Google Scholar 

  • Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package), Version 3.5C. Distributed by the author, Department of Genetics, University of Washington, Seattle.

  • Ferguson, M. M., Danzmann, R. G., and Hutchings, J. A. (1991). Incongruent estimates of population differentiation among brook charr, Salvelinus fontinalis, from Cape Race, Newfoundland, Canada, based upon allozyme and mitochondrial DNA variation. J. Fish Biol. 39:79–85.

    CAS  Google Scholar 

  • Ifantidis, M. D. (1979). Morphological characters of the Greek honeybee Apis mellifica cecropia. Proceedings of the 27th Apimondia International Apicultural Congress, Athens, pp. 285–294.

  • Kandemir, I., Meixner, M. D., and Sheppard, W. S. (2003). Morphometric, allozymic, and mtDNA variation in honeybee (Apis mellifera cypria, Pollman 1879) populations in northern Cyprus. Final Program and Book of Abstracts, 38th Apimondia International Apicultural Congress, p. 798.

  • Kluge, A. G., and Farris, J. S. (1969). Quantitive phyletics and the evolution of anurans. Syst. Zool. 18:1–32.

    Google Scholar 

  • Mantel, N. A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209–220.

    PubMed  CAS  Google Scholar 

  • Moritz, C., Dowling, T. E., and Brown, W. M. (1987). Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Ann. Rev. Ecol. Syst. 18:269–292.

    Article  Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. Am. Naturalist 106:283–291.

    Article  Google Scholar 

  • Nunamaker, R. A., Wilson, W. T., and Haley, B. E. (1984). Electrophoretic detection of Africanized honey bee (Apis mellifera scutellata) in Guatemala and Mexico based on malate dehydrogenase allozyme patterns. J. Kans. Entomol. Soc. 57:622–631.

    Google Scholar 

  • Page, R. D. M. (1996). TreeView: An application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12:357–358.

    PubMed  CAS  Google Scholar 

  • Papasotiropoulos, V., Klossa-Kilia, E., Kilias, G., and Alahiotis, S. (2001). Genetic divergence and phylogenetic relationships in grey mullets (Teleostei: Mugilidae) using allozyme data. Biochem. Genet. 39:155–168.

    Article  PubMed  CAS  Google Scholar 

  • Poulik, M. D. (1957). Starch gel electrophoresis in a discontinuous system of buffers. Nature 180:1477–1479.

    PubMed  CAS  Google Scholar 

  • Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43(1):223–225.

    Google Scholar 

  • Richardson, B. J., Baverstock, P. R., and Adams, M. (1986). Allozyme Electrophoresis. Academic, New York.

    Google Scholar 

  • Robinson, G. E., and Page, R. E. Jr. (1988). Genetic determination of guarding and undertaking in honey bee colonies. Nature 333:356–358.

    Article  Google Scholar 

  • Robinson, G. E., and Page, R. E. Jr. (1989). Genetic determination of nectar foraging, pollen foraging, and nest-site scouting in honey bee colonies. Behav. Ecol. Sociobiol. 24:317–323.

    Article  Google Scholar 

  • Robinson, G. E., Page, R. E. Jr., and Fondrk, M. K. (1990). Intracolonial behavioural variation in worker oviposition, oophagy, and larval care in queenless honey bee colonies. Behav. Ecol. Sociobiol. 26:315–323.

    Article  Google Scholar 

  • Rohlf, J. (1990). NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, Exeter Software, New York.

    Google Scholar 

  • Ruttner, F. (1988). Biogeography and Taxonomy of Honeybees, Springer–Verlag, Berlin.

    Google Scholar 

  • Ruttner, F. (1992). Naturgeschichte der Honigbienen, Ehrenwirth Verlag, Munich, Germany.

    Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406–425.

    PubMed  CAS  Google Scholar 

  • Shaw, C. R., and Prasad, R. (1970). Starch gel electrophoresis of enzymes: A compilation of recipes. Biochem. Genet. 4:297–320.

    PubMed  CAS  Google Scholar 

  • Schiff, N. M., and Sheppard, W. S. (1995). Genetic analysis of commercial honey bees (Hymenopetera, Apidae) from the southeastern United States. J. Econ. Entomol. 88(5):1216–1220.

    Google Scholar 

  • Sheppard, W. S. (1988). Comparative study of enzyme polymorphism in United States and European honey bee (Hymenoptera: Apidae) populations. Ann. Entomol. Soc. Am. 81:886–889.

    Google Scholar 

  • Sheppard, W. S., and Berlocher, S. H. (1989). Allozyme variation and differentiation among four Apis species. Apidologie 20(5):419–431.

    Google Scholar 

  • Sheppard, W. S., and Huettel, M. D. (1988). Biochemical genetic markers, intraspecific variation, and population genetics of the honey bee. In Needham, G. R., Page Jr., R. E., Delfinado-Baker, M., and Bowman, C. E. (eds.), Africanized Honey Bees and Bee Mites, Ellis-Horwood, Chichester, England, pp. 281–286.

  • Sheppard, W. S., and McPheron, B. A. (1986). Genetic variation in honeybees from an area of racial hybridization in western Czechoslovakia. Apidologie 17(1):21–23.

    Google Scholar 

  • Sheppard, W. S., and Meixner, M. D. (2003). Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie 34:367–375.

    Article  Google Scholar 

  • Sheppard, W. S., and Smith, D. R. (2000). Identification of African-derived bees in the Americas: A survey of methods. Ann. Entomol. Soc. Am. 93:159–176.

    CAS  Google Scholar 

  • Sheppard, W. S., Arias, M. C., Greech, A., and Meixner, M. D. (1997). Apis mellifera ruttneri, a new honey bee subspecies from Malta. Apidologie 28:287–293.

    Google Scholar 

  • Sneath, P. H. A., and Sokal, R. R. (1973). Numerical Taxonomy: The principle and practice of numerical classification. W. H. Freeman, San Francisco.

    Google Scholar 

  • Sylvester, H. A. (1982). Electrophoretic identification of Africanized honeybees. J. Apic. Res. 21 (2):93–97.

    Google Scholar 

  • Sylvester, H. A. (1986). Biochemical Genetics. In Rinderer, T. E. (ed.), Bee Genetics and Breeding, Academic Press, Orlando, FL, pp. 177–203.

  • Swofford, D. L., and Selander, R. B. (1981). BIOSYS-1: A computer program for the analysis of allelic variation in genetics. Rel. 1.0. Department of Genetics and Development, University of Illinois, Urbana-Champaign.

  • Visscher, P. K. (1996). Reproductive conflict in honey bees: A stalemate of worker egg-laying and policing. Behav. Ecol. Sociobiol. 39:237–244.

    Article  Google Scholar 

  • Wright, S. (1965). The interpretation of population structure by F-Statistics with special regard to systems of mating. Evolution 19:395–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bouga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouga, M., Kilias, G., Harizanis, P.C. et al. Allozyme Variability and Phylogenetic Relationships in Honey Bee (Hymenoptera: Apidae: Apis mellifera) Populations From Greece and Cyprus. Biochem Genet 43, 471–483 (2005). https://doi.org/10.1007/s10528-005-8163-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-005-8163-2

Keywords

Navigation