Skip to main content
Log in

Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Synthesis of silver nanoparticles using α-NADPH-dependent nitrate reductase and phytochelatin in vitro has been demonstrated for the first time. The silver ions were reduced in the presence of nitrate reductase, leading to the formation of a stable silver hydrosol 10–25 nm diam. and stabilized by the capping peptide. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-Vis absorption. These studies will help in designing a rational enzymatic strategy for the synthesis of nanomaterials of different chemical composition, shapes and sizes as well as their separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus, Fusarium oxysporum. Colloids Surf B 8:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    PubMed  CAS  Google Scholar 

  • Chastain J (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Norwalk

    Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Caroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulfide quantum semiconductor nanocrystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Duncan JR, Brady D, Wilhelmi BS (1997) Immobilization of yeast and algal cells for bioremediation of heavy metals. Bioremed Prot 2:91–97

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotech 3:8 1–7

    Article  Google Scholar 

  • Eflink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227

    Article  Google Scholar 

  • Feynman RP (1991) There’s plenty of room at the bottom. Science 254:1300–1301

    Article  Google Scholar 

  • Fortin D, Beveridge TJ (2000) Mechanistic routes towards biomineral surface development. In: Baeuerlein E (ed) Biomineralisation. Biology to biotechnology and medical application. Wiley-VCH, Verlag, Germany, p. 294

  • Jeffrey JW (1971) Methods in Crystallography. Academic press, New York

    Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv Mater 12:407–409

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  PubMed  CAS  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  PubMed  CAS  Google Scholar 

  • Mann S (ed) (1996) Biomimetic materials chemistry. VCH, New York

    Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajaykumar PV, Alam M, Sastry M (2001a) Bioreduction of AuCl 4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus, Fusarium oxysporum. ChemBio-Chem 3:461–463

    CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal nanoparticles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Rao CNR, Cheetham AK (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11:2887–2894

    Article  CAS  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Academic, New York

    Google Scholar 

  • Snell FP, Snell CT (1949) Colorimetric methods of analysis 3:804. D. Van Nostrand Inc

  • Southam G, Beveridge TJ (1996) The occurrence of bacterially derived sulfur and phosphorus within pseudocrystalline and crystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60:4369–4376

    Article  CAS  Google Scholar 

  • Stephen JR, Maenaughton SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10:230–233

    Article  PubMed  CAS  Google Scholar 

  • Stoscheck CM (1990) Quantitation of protein. Methods Enzymol 182:50–69

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determinations by Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis. J Biol Chem 244:4406–4412

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

S. Anil Kumar thanks the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance. This work was supported by a grant from the Department of Biotechnology, Govt. of India to Dr. M. I. Khan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anil Kumar, S., Abyaneh, M.K., Gosavi, S.W. et al. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3 . Biotechnol Lett 29, 439–445 (2007). https://doi.org/10.1007/s10529-006-9256-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9256-7

Keywords

Navigation