Skip to main content
Log in

Biodiesel production with special emphasis on lipase-catalyzed transesterification

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal AK (2006) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Article  Google Scholar 

  • Akoh CC, Chang SW, Lee GC et al (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005

    Article  CAS  PubMed  Google Scholar 

  • Aksoy HA, Kahraman I, Karaosmanoglu F et al (1988) Evaluation of Turkish sulphur olive oil as an alternative diesel fuel. J Am Oil Chem Soc 65:936–938

    Article  CAS  Google Scholar 

  • Annapurna K, Paramita M, Vijay K et al (2009) Enzymatic transesterification of jatropha oil. BMC Biotechnol Biofuels 2(1):1–7

    Article  Google Scholar 

  • Bako KB, Kova FCS, Gubicza L et al (2002) Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent free system. Biocatal Biotransform 20:437–439

    Article  Google Scholar 

  • Ban K, Hama S, Nishizuka K (2002) Repeated use of whole cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B 17:157–165

    Article  CAS  Google Scholar 

  • Barnwal BK, Sharma MP (2005) Prospects of Biodiesel production from vegetable oils in India. Renew Sustain Energy Rev 9(4):363–378

    Article  Google Scholar 

  • Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721

    Article  CAS  PubMed  Google Scholar 

  • Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469

    CAS  PubMed  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW et al (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35:4661–4670

    Article  Google Scholar 

  • Devanesan MG, Viruthagiri T, Sugumar N (2007) Transesterification of jatropha oil using immobilized Pseudomonas fluorescens. Afr J Biotechnol 6(21):2497–2501

    CAS  Google Scholar 

  • Diesel R (1912a) The diesel oil-engine and its industrial importance particularly for Great Britain. Proc Inst Mech Eng 179–280; Chem Abstr 7:1605 (1913)

  • Diesel R (1912b) The diesel oil-engine. Engineering 93:395–406; Chem Abstr 6:1984 (1912)

    Google Scholar 

  • Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1313

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H, Kondo A (2003) Method for enhancing catalytic activity of cells. US Patent No: US 6524839 B1

  • Fukuda H, Noda H (2006) Process for producing fatty acid lower alcohol ester. US Patent No: US 6982155 B1

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416

    Article  CAS  PubMed  Google Scholar 

  • Gemma V, Mercedes M, Jose A (2006) Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresour Technol 98(9):1724–1733

    Google Scholar 

  • Goering CE, Camppion RN, Schwab AW et al (1982) In: St. Joseph MI (ed) Vegetable oil fuels. Proceedings of the international conference on plant and vegetable oils as fuels, vol 4. ASAE, Fargo, pp 279–286

  • Guckert JB, Cooksey KE (1990) Triacylglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high-pH induced cell cycle inhibition. J Phycol 26:72–79

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Yamaji H, Kaieda M (2004) Effect of fatty acid membrane composition on whole cell biocatalysts for biodiesel-fuel production. Biochem Eng J 21:155–160

    Article  CAS  Google Scholar 

  • Hama S, Yamaji H, Fukumizu T (2006) Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole cell biocatalysts in biodiesel fuel production. J Biosci Bioeng 101:328–333

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Yamaji H, Fukumizu T et al (2007) Biodiesel fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34:273–278

    Article  CAS  Google Scholar 

  • Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer, Dordrecht, pp 53–64

    Google Scholar 

  • Iso M, Chem B, Eguchi M et al (2001) Production of Biodiesel from triglycerides and ethanol using immobilized enzyme. J Mol Catal B 16:53–58

    Article  CAS  Google Scholar 

  • Kaieda M, Samukawa T, Kondo A et al (2000) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15

    Article  Google Scholar 

  • Knothe G (2001) Historical perspectives on vegetable oil-based diesel fuels. Inform 12(11):1103–1107

    Google Scholar 

  • Krawczyk T (1996) Biodiesel—alternative fuel makes inroads but hurdles remain. Inform 7:801–829

    Google Scholar 

  • Li L, Du W, Liu D et al (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B 43:58–62

    Article  CAS  Google Scholar 

  • Li W, Du W, Liu D (2007) Rhizopus oryzae IFO 4697 whole cell catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol system. Process Biochem 42:1481–1485

    Article  CAS  Google Scholar 

  • Linko YY, Liimsii M, Wu X et al (1998) Biodegradable products by lipase biocatalysis. J Biotechnol 66:41–50

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Nie K, Xie F et al (2007) Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99-125. Process Biochem 42:1367–1370

    Article  CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  • Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11:1300–1311

    Article  CAS  Google Scholar 

  • Matsumoto T, Takahashi SA, Kaieda M (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl Microbiol Biotechnol 57:515–520

    Article  CAS  PubMed  Google Scholar 

  • Meher LC, Vidya SD, Naki SN (2004) Technical aspect of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10(3):1–21

    Google Scholar 

  • Modi MK, Reddy JRC, Rao BVSK et al (2006) Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor. Biotechnol Lett 28:637–640

    Article  CAS  PubMed  Google Scholar 

  • Nie K, Xie F, Wang F et al (2006) Lipase-catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B 43:142–147

    Article  CAS  Google Scholar 

  • Noureddini H, Gao X, Phikana RS (2001) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soyabean oil. Bioresour Technol 96:767–777

    Google Scholar 

  • Park EY, Masayasu S, Seiji K (2007) Lipase-catalyzed biodiesel production from waste activated bleaching earth as raw material in a pilot plant. Bioresour Technol 99(8):3130–3135

    Article  PubMed  Google Scholar 

  • Pohl P, Zurheide F (1979) Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors. In: Hoppe A, Levring T, Tanaka Y (eds) Marine algae in pharmaceutical science. Walter de Gruyter, Berlin, pp 473–523

    Google Scholar 

  • Pryor RW, Hanna MA, Schinstock JL et al (1983) Soybean oil fuel in a small diesel engine. Trans ASAE 26(2):333–342

    CAS  Google Scholar 

  • Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99(10):3975–3981

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):2–7

    Article  Google Scholar 

  • Royon D, Daz M, Ellenrieder G (2007) Enzymatic production of biodiesel from cottonseed oil using t-butanol as a solvent. Bioresour Technol 98:648–653

    Article  CAS  PubMed  Google Scholar 

  • Samukawa T, Kaieda M, Matsumoto T et al (2000) Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J Bioresour Bioeng 90:180–183

    CAS  Google Scholar 

  • Schwab AW, Bagby MO, Freedman B (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66:1372–1378

    Article  CAS  Google Scholar 

  • Sellappan S, Akoh CC (2005) Applications of lipases in modification of food lipids. In: Hou CT (ed) Handbook of industrial catalysis. Taylor and Francis, Boca Raton, pp 9-1–9-39

  • Shah S, Gupta MN (2007) Lipase catalyzed preparation of biodiesel from jatropha oil in a solvent free system. Process Biochem 42:409–414

    Article  CAS  Google Scholar 

  • Shah S, Sharma S, Gupta MN (2003) Enzymatic transesterification for biodiesel production. Indian J Biochem Biophys 40:392–399

    CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Samukawa T et al (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

    Article  CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B 17:133–142

    Article  CAS  Google Scholar 

  • Sivakumar G, Vail DR, Xu J et al (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng Life Sci 10(1):8–18

    Article  CAS  Google Scholar 

  • Sonntag NOV (1979) Reactions of fats and fatty acids. In: Swern D (ed) Bailey’s industrial oil and fat products, vol 1, 4th edn. Wiley, New York, 99 pp

  • Sulaiman A, Wei FL, Lim SJ (2007) Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem 42:951–960

    Article  Google Scholar 

  • Tamalampudi S, Talukder MR, Hamad S et al (2007) Enzymatic production of biodiesel from jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39(1):185–189

    Article  Google Scholar 

  • Watanabe Y, Shimada Y, Sugihara A et al (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77:355–360

    Article  CAS  Google Scholar 

  • Watanabe Y, Pinsirodom P, Nagao T (2007) Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase. J Mol Catal B 44:99–105

    Article  CAS  Google Scholar 

  • Wawrik B, Harriman BH (2010) Rapid, colorimetric quantification of lipid from algal cultures. J Microbiol Methods 80(3):262–266

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Du W, Zeng J (2004) Conversion of soyabean oil to biodiesel fuel using lipozyme TL IM in a solvent free medium. Biocatal Biotransform 22:45–48

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for the award of Emeritus Scientist to Prof. P.S. Bisen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash S. Bisen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisen, P.S., Sanodiya, B.S., Thakur, G.S. et al. Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnol Lett 32, 1019–1030 (2010). https://doi.org/10.1007/s10529-010-0275-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0275-z

Keywords

Navigation