Skip to main content
Log in

Beneficial bacteria of agricultural importance

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The rhizosphere is the soil–plant root interphase and in practice consists of the soil adhering to the root besides the loose soil surrounding it. Plant growth-promoting rhizobacteria (PGPR) are potential agents for the biological control of plant pathogens. A biocontrol strain should be able to protect the host plant from pathogens and fulfill the requirement for strong colonization. Numerous compounds that are toxic to pathogens, such as HCN, phenazines, pyrrolnitrin, and pyoluteorin as well as, other enzymes, antibiotics, metabolites and phytohormones are the means by which PGPR act, just as quorum sensing and chemotaxis which are vital for rhizosphere competence and colonization. The presence of root exudates has a pronounced effect on the rhizosphere where they serve as an energy source, promoting growth and influencing the root system for the rhizobacteria. In certain instances they have products that inhibit the growth of soil-borne pathogens to the advantage of the plant root. A major source of concern is reproducibility in the field due to the complex interaction between the plant (plant species), microbe and the environment (soil fertility and moisture, day length, light intensity, length of growing season, and temperature). This review listed most of the documented PGPR genera and discussed their exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  PubMed  CAS  Google Scholar 

  • Ahn TS, Ka JO, Lee GH, Song HG (2007) Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria. J Microbiol Biotechnol 17(1):52–57

    PubMed  Google Scholar 

  • Alexandre G, Greer SE, Zhulin IB (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J Bacteriol 182(21):6042–6048

    Article  PubMed  CAS  Google Scholar 

  • Anith KN, Momol MT, Kloepper JW, Marois JJ, Olson SM, Jones JB (2004) Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis 88(6):669–673

    Article  CAS  Google Scholar 

  • Anjum MA, Sajjad MR, Akhtar N, Qureshi MA, Iqbal A, Jami AR, Hasan M (2007) Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J Agric Res 45(2):135

    Google Scholar 

  • Babalola OO (2010) Ethylene quantification in three rhizobacterial isolates from Striga hermonthica-infested maize and sorghum. Egypt J Biol 12:1–5

    Google Scholar 

  • Babalola OO, Osir EO, Sanni AI (2002) Characterization of potential ethylene-producing rhizosphere bacteria of Striga-infested maize and sorghum. Afr J Biotechnol 1(2):67–69

    CAS  Google Scholar 

  • Babalola OO, Berner DK, Amusa NA (2007a) Evaluation of some bacterial isolates as germination stimulants of Striga hermonthica. Afr J Agric Res 2(1):27–30

    Google Scholar 

  • Babalola OO, Sanni AI, Odhiambo GD, Torto B (2007b) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23(6):747–752

    Article  Google Scholar 

  • Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11(3):566–576

    Article  PubMed  CAS  Google Scholar 

  • Baehler E, de Werra P, Wick LY, Pechy-Tarr M, Mathys S, Maurhofer M, Keel C (2006) Two novel MvaT-like global regulators control exoproduct formation and biocontrol activity in root-associated Pseudomonas fluorescens CHAO. Mol Plant Microbe Interact 19(3):313–329

    Article  PubMed  CAS  Google Scholar 

  • Barriuso J, Solano BR, Fray RG, Camara M, Hartmann A, Manero FJG (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6(5):442–452

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2):241–250

    Article  CAS  Google Scholar 

  • Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dye F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159(9–10):699–708

    Article  PubMed  CAS  Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP (2009) Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107(2):625–634

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513

    Article  PubMed  CAS  Google Scholar 

  • Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70(3):1836–1842

    Article  PubMed  CAS  Google Scholar 

  • Egamberdieva D (2008) Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk J Biol 32(1):9–15

    Google Scholar 

  • Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50(2):277–288

    Article  PubMed  CAS  Google Scholar 

  • Hynes RK, Leung GCY, Hirkala DLM, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can J Microbiol 54(4):248–258

    Article  PubMed  CAS  Google Scholar 

  • Jha B, Thakur MC, Gontia I, Albrecht V, Stoffels M, Schmid M, Hartmann A (2009) Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. Eur J Soil Biol 45(1):62–72

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and l-tryptophane in exudates of vegetables growing on stone wool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19(3):250–256

    Article  PubMed  CAS  Google Scholar 

  • Kaymak HC, Guvenc I, Yarali F, Donmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For 33(2):173–179

    CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 14(9):1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170(1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Latha P, Anand T, Rappathi N, Prakasam V, Samiyappan R (2009) Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biol Control 50(2):85–93

    Article  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52(5):363–368

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio J, Campos-Cuevas JC, Hernandez-Calderon E, Velasquez-Becerra C, Farias-Rodriguez R, Macias-Rodriguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20(2):207–217

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39:461–490

    Article  CAS  Google Scholar 

  • MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20:387–442

    Article  CAS  Google Scholar 

  • Meunchang S, Panichsakpatana S, Weaver RW (2006) Tomato growth in soil amended with sugar mill by-products compost. Plant Soil 280(1–2):171–176

    Article  CAS  Google Scholar 

  • Muleta D, Assefa F, Granhall U (2007) In vitro antagonism of rhizobacteria isolated from Coffea arabica L against emerging fungal coffee pathogens. Eng Life Sci 7(6):577–586

    Article  CAS  Google Scholar 

  • Pirlak L, Kose M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32(7):1173–1184

    Article  CAS  Google Scholar 

  • Pothier JF, Wisniewski-Dye F, Weiss-Gayet M, Moenne-Loccoz Y, Prigent-Combaret C (2007) Promoter-trap identification of wheat seed extract induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology (UK) 153:3608–3622

    Article  CAS  Google Scholar 

  • Principe A, Alvarez F, Castro MG, Zachi L, Fischer SE, Mori GB, Jofre E (2007) Biocontrol and PGPR features in native strains isolated from saline soils of Argentina. Curr Microbiol 55:314–322

    Article  PubMed  CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr IM (2005) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremediat 7(1):19–32

    Article  CAS  Google Scholar 

  • Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control 50(2):194–198

    Article  Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, Teixeira KRD, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302(1–2):249–261

    Article  CAS  Google Scholar 

  • Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268(1):285–292

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  PubMed  CAS  Google Scholar 

  • Shaharoona B, Bibi R, Arshad M, Zahir ZA, Zia Ul H (2006) 1-Aminocylopropane-1-carboxylate (ACC) deaminase rhizobacteria extenuates ACC-induced classical triple response in etiolated pea seedlings. Pak J Bot 38(5):1491–1499

    Google Scholar 

  • Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L). J Microbiol Biotechnol 17(8):1300–1307

    PubMed  CAS  Google Scholar 

  • Solans M, Vobis G, Wall LG (2009) Saprophytic actinomycetes promote nodulation in Medicago sativa-Sinorhizobium meliloti symbiosis in the presence of high N. J Plant Growth Regul 28(2):106–114

    Article  CAS  Google Scholar 

  • Steindler L, Bertani I, De Sordi L, Schwager S, Eberl L, Venturi V (2009) LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 75(15):5131–5140

    Article  PubMed  CAS  Google Scholar 

  • Urashima Y, Sakai M, Suga Y, Fukunaga A, Hori K (2004) Gravitational water flow enhances the colonization of spinach roots in soil by plant growth-promoting Pseudomonas. Soil Sci Plant Nutr 50(2):277–281

    Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babalola, O.O. Beneficial bacteria of agricultural importance. Biotechnol Lett 32, 1559–1570 (2010). https://doi.org/10.1007/s10529-010-0347-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0347-0

Keywords

Navigation