Skip to main content

Advertisement

Log in

Direct and indirect effects of invasion by the alien tree Ailanthus altissima on riparian plant communities and ecosystem multifunctionality

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Most existing studies addressing the effects of invasive species on biodiversity focus on species richness ignoring better indicators of biodiversity and better predictors of ecosystem functioning such as the diversity of evolutionary histories (phylodiversity). Moreover, no previous study has separated the direct effect of alien plants on multiple ecosystem functions simultaneously (multifunctionality) from those indirect ones mediated by the decrease on biodiversity caused by alien plants. We aimed to analyze direct and indirect effects, mediated or not by its effect on biodiversity, of the invasive tree Ailanthus altissima on ecosystem multifunctionality of riparian habitats under Mediterranean climate. We measured vegetation attributes (species richness and phylodiversity) and several surrogates of ecosystem functioning (understory plant biomass, soil enzyme activities, available phosphorous and organic matter) in plots infested by A. altissima and in control (non-invaded) ones. We used structural equation modelling to tease apart the direct and indirect effects of A. altissima on ecosystem multifunctionality. Our results suggest that lower plant species richness, phylodiversity and multifunctionality were associated to the presence of A. altissima. When analyzing each function separately, we found that biodiversity has the opposite effect of the alien plant on all the different functions measured, therefore reducing the strength of the effect (either positive or negative) of A. altissima on them. This is one of the few existing studies addressing the effect of invasive species on phylodiversity and also studying the effect of invasive species on multiple ecosystem functions simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. Plymouth, PRIMER-E

    Google Scholar 

  • Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Bell CD, Soltis DE, Soltis P (2010) The age and diversification of angiosperms re-revisited. Am J Bot 97:1296–1303

    Article  PubMed  Google Scholar 

  • Bennett JA, Stotz GC, Cahill JF (2014) Patterns of phylogenetic diversity are linked to invasion impacts, not invasion resistance, in a native grassland. J Veg Sci. doi:10.1111/jvs.12199

    Google Scholar 

  • Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin PA (2009) Phylogenomics of C4 Photosynthesis in Sedges (Cyperaceae): multiple appearances and genetic convergence. Mol Biol Evol 26:1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, Van de Bank M, Chase MW, Hodkinson TR (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol phylogenet Evol 47:488–505

    Article  CAS  PubMed  Google Scholar 

  • Bremer B, Eriksson T (2009) Time tree of Rubiaceae: phylogeny and dating the family, subfamilies, and tribes. Int J Plant Sci 170:766–793

    Article  Google Scholar 

  • Burns JH, Strauss SY (2011) More closely related species are more ecologically similar in an experimental test. Proc Natl Acad Sci USA 108:5302–5307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burns RG, DeForest JL, Marxsenc J, Sinsabaughd RL, Strombergere ME, Wallensteinf MD, Weintraubg MN, Zoppinih A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cantero JJ, Liira J, Cisneros JM, Gonzalez J, Nuñez C, Petryna L, Cholaky C, Zobel M (2003) Species richness, alien species and plant traits in Central Argentine mountain grasslands. J Veg Sci 14:129–136

    Article  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time due to complementary resource use: a meta-analysis. Proc Natl Acad Sci USA 104:18123–18128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of exotic invasive trees on nitrogen cycling: a case study in central Spain. Biol Invasions 11:1973–1986

    Article  Google Scholar 

  • Castro-Díez P, Fierro-Brunnenmeister N, González-Muñoz N, Gallardo A (2012) Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant Soil 350:179–191

    Article  Google Scholar 

  • CMA (1973) Determinaciones analíticas de suelos. Normalización de métodos. I. pH, materia orgánica y nitrógeno. An Edafol Agrobiol 32:1153–1172

    Google Scholar 

  • Constán-Nava S, Bonet A, Terrones B, Albors JL (2007) Plan de actuación para el control de la especie Ailanthus altissima en el Parque Natural del Carrascal de la Font Roja, Alicante. Bol Europarc 24:34–38

    Google Scholar 

  • Décamps H (1993) River margins and environmental change. Ecol Appl 3:441–445

    Article  Google Scholar 

  • Decreto 70/2009, de 22 de mayo, del Consell, por el que se crea y regula el Catálogo Valenciano de Especies de Flora Amenazadas y se regulan medidas adicionales de conservación [2009/5938]

  • Development Core Team R (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora

  • Downie SR, Katz-Downie DS, Watson MF (2000) A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. Am J Bot 87:273–292

    Article  CAS  PubMed  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proc Natl Acad Sci USA 105:6087–6090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–1581

    Article  PubMed  Google Scholar 

  • Follstad Shah JJ, Harner MJ, Tibbets TM (2010) Elaeagnus angustifolia elevates soil inorganic nitrogen pools in riparian ecosystems. Ecosystems 13(1):46–61

    Article  CAS  Google Scholar 

  • Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş S, van der Bank M, Reeves G, Hedderson TA, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760

    Article  CAS  PubMed  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. John Wiley and Sons Inc, New York

    Google Scholar 

  • Funk VA, Anderberg AA, Baldwin BG et al (2009) Compositae metatrees: the next generation. In: Funk VA, Susana A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of Compositae. International Association for Plant Taxonomy, Vienna, pp 747–777

    Google Scholar 

  • Gaertner M, Breeyen AD, Hui C, Richardson DM (2009) Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog Phys Geogr 33:319–338

    Article  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89:1223–1231

    Article  PubMed  Google Scholar 

  • Godoy O, Castro-Diez P, Van Logtestijn RSP, Cornelissen JHC, Valladares F (2010) Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia 162:781–790

    Article  PubMed  Google Scholar 

  • Gómez-Aparicio L, Canham CD (2008) Neighborhood models of the effects of invasive tree species on ecosystem processes. Ecol Monogr 78:69–86

    Article  Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge, UK

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190

    Article  CAS  PubMed  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971–2972

    Article  CAS  PubMed  Google Scholar 

  • Hejda M, de Bello F (2013) Impact of plant invasions on functional diversity in the vegetation of Central Europe. J Veg Sci. doi:10.1111/jvs.12026

  • Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Am Nat 169:E68–E83

    Article  PubMed  Google Scholar 

  • Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hulme PE, Bremner ET (2006) Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. J Appl Ecol 43:43–50

    Article  Google Scholar 

  • Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci USA 110:11911–11916

  • Jax K (2010) Ecosystem functioning. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kowarik I (1983) Colonization by the tree of heaven (Ailanthus altissima) in the French mediterranean region (Bas-Languedoc) and its phytosociological characteristics. Phytocoenology 11:389–405

    Article  Google Scholar 

  • Kowarik I, Säumel I (2007) Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect Plant Ecol Evol Syst 8:207–237

    Article  Google Scholar 

  • Kowarik I, von der Lippe M (2006) Long-distance dispersal of Ailanthus altissima along road corridors through secondary dispersal by wind. BfN-Skripten 177:184

    Google Scholar 

  • Kowarik I, von der Lippe M (2011) Secondary wind dispersal enhances long-distance dispersal of an invasive species in urban road corridors. NeoBiota 9:49–70

    Article  Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283

    Article  PubMed  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:575–594

    Article  PubMed  Google Scholar 

  • Lawrence JG, Colwell A, Sexton OJ (1991) The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae). Am J Bot 78:948–958

    Article  Google Scholar 

  • Levine JM, D´Antonio CM, Dukes JS, Grigulus K, Lavorel S, Vilà M (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond 270:775–781

    Article  Google Scholar 

  • Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  CAS  PubMed  Google Scholar 

  • Maestre FT, Puche MD (2009) Indices based on surface indicators predict soil functioning in Mediterranean semiarid steppes. Appl Soil Ecol 41:342–350

    Article  Google Scholar 

  • Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012a) Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol 100:317–330

    Article  CAS  Google Scholar 

  • Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S et al (2012b) Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345

    Article  Google Scholar 

  • Meffin R, Miller AL, Hulme PE, Duncan RP (2010) Experimental introduction of the alien weed Hieracium lepidulum reveals no significant impact on montane plant communities in New Zealand. Divers Distrib 16:804–815

    Article  Google Scholar 

  • Milcu A, Allan E, Roscher C, Jenkins T, Meyer ST, Flynn D, Bessler H, Buscot F, Engels C, Gubsch M, König S, Lipowsky A, Loranger J, Renker C, Scherber C, Schmid B, Thébault E, Wubet T, Weisser WW, Scheu S, Eisenhauer N (2013) Functionally and phylogenetically diverse plant communities key to soil biota. Ecology 94:1878–1885

    Article  PubMed  Google Scholar 

  • Mooney HA, Drake JA (1986) Ecology of biological invasion of North America and Hawaii. Springer-Verlag, New York, p 321

    Book  Google Scholar 

  • Motard E, Muratet A, Clair-Maczulajtys D, Machon N (2011) Does the invasive species Ailanthus altissima threaten floristic diversity of temperate peri-urban forests? Comptes Rendus Biol 12:872–879

    Article  Google Scholar 

  • Pausas JG, Verdú M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60:614–625

    Article  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh SH, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault MP, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43

    Article  Google Scholar 

  • Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for Phylogenetic conservatism. Proc R Soc Lond 268:2383–2389

    Article  CAS  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737

    Article  Google Scholar 

  • Reich PB, Oleksyn J, Modrzynski J et al (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818

    Article  Google Scholar 

  • Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505

    Article  PubMed  Google Scholar 

  • Santoro R, Jucker T, Carboni M, Acosta ATR (2012) Patterns of plant community assembly in invaded and non-invaded communities along a natural environmental gradient. J Veg Sci 23:483–494

    Article  Google Scholar 

  • Säumel I, Kowarik I (2010) Urban rivers as dispersal corridors for primarily wind–dispersed invasive tree species. Landsc Urban Plan 94:244–249

    Article  Google Scholar 

  • Säumel I, Kowarik I (2013) Propagule morphology and river characteristics shape secondary water dispersal in tree species. Plant Ecol 214:1257–1272

    Article  Google Scholar 

  • Sax DF, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18:561–566

    Article  Google Scholar 

  • Serra L, Pérez Rovira P, Deltoro V, Fabregat C, Laguna E, Pérez Botella J (2003) Distribution, status and conservation of rare relict plant species in the Valencian Community. Bocconea 16:857–863

    Google Scholar 

  • Serra L, Conca A, Lara N, Pérez Botella J, García Alonso F (2006) Adiciones y correcciones a la orquidoflora valenciana, II. Toll Negre 7:5–8

    Google Scholar 

  • Shipley B (2000) Cause and correlation in biology: A user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, UK

    Book  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32

    Article  Google Scholar 

  • Simberloff D, Relva MA, Nuñez M (2003) Introduced species and management of a Nothofagus/Austrocedrus forest. Environ Manag 31:263–275

    Article  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN et al (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264

    PubMed  Google Scholar 

  • Soliveres S, Torices R, Maestre FT (2012) Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant-plant interactions. Oikos 121:1638–1648

    Article  Google Scholar 

  • Steele KP, Ickert-Bond SM, Zarre S, Wojciechowski MF (2010) Phylogeny and character evolution in Medicago (Leguminosae): evidence from analyses of plastid trnK/matK and nuclear GA3ox1 sequences. Am J Bot 97:1142–1155

    Article  CAS  PubMed  Google Scholar 

  • Tabacchi E, Lambs L, Guilloy H, Planty-Tabacchi AM, Muller E, Décamps H (2000) Impacts of riparian vegetation on hydrological processes. Hydrol Process 14:2959–2976

    Article  Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. American Society of Agronomy, Madison, pp 943–947

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Monographs in population biology 26. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torices R (2010) Adding time-calibrated branch lengths to the Asteraceae supertree. J Syst Evol 48:271–278

    Article  Google Scholar 

  • Traveset A, Brundu B, Carta M et al (2008) Consistent performance of invasive plant species within and among islands of the Mediterranean basin. Biol Invasions 10:847–858

    Article  Google Scholar 

  • Tu M (2003) Element stewardship abstract: Elaeagnus angustifolia L., [Online]. In: Invasives on the web: the nature conservancy wildland invasive species program. Davis, CA: The Nature Conservancy (Producer)

  • Vacher C, Daudin JJ, Piou D, Desprez-Loustau ML (2010) Ecological integration of alien species into a tree–parasitic fungus network. Biol Invasions 12:3249–3259

    Article  Google Scholar 

  • Vamosi SM, Heard SB, Vamosi JC, Webb CO (2009) Emerging patterns in the comparative analysis of phylogenetic community structure. Mol Ecol 18:572–592

    Article  CAS  PubMed  Google Scholar 

  • Vilà M, Tessier M, Suehs CM et al (2006) Local and regional assessment of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J Biogeogr 33:853–861

    Article  Google Scholar 

  • Vilà M, Espinar J, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Vitousek PM (1986) Biological invasions and ecosystem properties: can species make a difference? In: Mooney GA, Drake JA (eds) Ecology of biological invasions of North America and Hawaii. Springer-Verlag, New York, pp 163–178

    Chapter  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo J (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wang W, Manchester SR, Li C, Geng B (2010) Fruits and leaves of Ulmus from the paleogene of Fushun, Northeastern China. Int J Plant Sci 171:221–226

    Article  Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Proc Soil Sci Soc Am 29:677–678

    Article  CAS  Google Scholar 

  • Webb C, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Webb C, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36:59–69

    Article  CAS  PubMed  Google Scholar 

  • Weintraub MN, Schimel JP (2005) The seasonal dynamics of amino acids and other nutrients in Alaskan arctic tundra soils. Biogeochemistry 73:359–380

    Article  CAS  Google Scholar 

  • Williamson M (1998) Measuring the impact of plant invaders in Britain. In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds) Plant invasions: ecological mechanism and human responses. Backhuys Plublishers, Leiden. The Netherlands, pp 57–68

    Google Scholar 

  • Winkworth RC, Bell CD, Donoghue MJ (2008) Mitochondrial sequence data and Dipsacales phylogeny: mixed models, partitioned Bayesian analyses, and model selection. Mol Phylogenet Evol 46:830–843

    Article  CAS  PubMed  Google Scholar 

  • Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487

    Article  Google Scholar 

  • Zasada JC, Little S (2002) Ailanthus altissima (P. Mill.) Swingle. In: Bonner, Franklin T (eds). Woody plant seed manual, [Online]. Washington, DC: U.S. Department of Agriculture, Forest Service (Producer)

  • Zavaleta ES, Pasari JR, Hulvey KB, Tilman DG (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci USA 107:1443–1446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Language Centre (University of Alicante) for improving the English of this manuscript. We are grateful for the collaboration of the staff at the Carrascal de la Font Roja and Sierra de Mariola Natural Parks. M. J. Nava, A. Constán, E. Pastor, A. Dávila, E. Rico and the rest of collaborators helped with the fieldwork. F. T. Maestre, Y. Valiñani, A. Sanz and P. Alonso helped with the enzymatic assays. This research and SCN PhD fellowship were supported by the ESTRES Project (063/SGTB/2007/7.1) and RECUVES Project (077/RN08/04.1) founded by the Spanish Ministerio de Medio Ambiente and BAHIRA CICYT project (CGL2008-03649/BTE) founded by the Spanish Ministerio de Ciencia y Tecnología. Font Roja Natura UA Scientific Station (ECFRN UA), depending on the Pro-Vice-Chancellorship for Research, Development and Innovation (VIDI) of the University of Alicante, supported also this research. SS was supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement 242658 (BIOCOM). RT was partially supported by a postdoctoral scholarship from the Spanish Ministerio de Educación (BVA 2010-0375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya Constán-Nava.

Additional information

Soraya Constán-Nava and Santiago Soliveres have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2,609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constán-Nava, S., Soliveres, S., Torices, R. et al. Direct and indirect effects of invasion by the alien tree Ailanthus altissima on riparian plant communities and ecosystem multifunctionality. Biol Invasions 17, 1095–1108 (2015). https://doi.org/10.1007/s10530-014-0780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0780-4

Keywords

Navigation