Skip to main content

Advertisement

Log in

Multiplex real-time PCR enables the simultaneous detection of environmental DNA from freshwater fishes: a case study of three exotic and three threatened native fishes in Japan

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Environmental DNA (eDNA) analysis has been used as a cost-efficient and non-invasive tool for monitoring invasive and threatened species. Previous studies typically involve two approaches; species-specific detection via PCR and multiple species detection via metabarcoding. However, the former could be costly when several species are targeted, and the latter could sometimes be insufficient to distinguish closely related species. Here, the simultaneous eDNA detection from multiple species via multiplex real-time PCR was applied to 99 ponds to evaluate the distribution of three exotic and three threatened native fish species over different seasons. We detected bluegill sunfish (Lepomis macrochirus) eDNA at 31 sites, largemouth bass (Micropterus salmoides) eDNA at 22 sites, smallmouth bass (Micropterus dolomieu) eDNA at one site, golden venus chub (Hemigrammocypris rasborella) eDNA at 11 sites, Japanese medaka (Oryzias latipes) eDNA at 26 sites, and weather loach (Misgurnus anguillicaudatus) eDNA at 41 sites. We found that eDNA detection rates were higher in early summer for all fish species. Moreover, exotic fish eDNA was detected more frequently in ponds which were easier to access by car and which have a larger surface area and higher pH. Furthermore, the detection rates of native fish eDNA were generally lower in the ponds where exotic fish eDNA was detected more frequently. Multiplex real-time PCR can help detect the distribution of exotic and threatened native species for conservation and ecosystem management. This method is expected to substantially contribute to the early detection of invasive species and the efficient protection of threatened species’ habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The raw data of multiplex real-time PCR experiments is included in the Supplemental Information.

References

  • Abell R (2002) Conservation biology for the biodiversity crisis: a freshwater follow-up. Conserv Biol 16(5):1435–1437

    Article  Google Scholar 

  • Akada J, Yodo T (2006) Geographical and between-habitat variations in the body shape of Hemigrammocypris rasbollera. Jpn J Ichthyol 53(2):175–179 (in Japanese)

    Google Scholar 

  • Alavi SMH, Cosson J (2006) Sperm motility in fishes. (II) Effects of ions and osmolality: a review. Cell Biol Int 30(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Bartoń K (2017) MuMIn: multi-model inference. R package version 1.40.0. https://CRAN.R-project.org/package=MuMIn. Accessed 7 June 2019

  • Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM (2014) Environmental conditions influence eDNA persistence in aquatic systems. Environ Sci Technol 48(3):1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Bernáldez V, Rodríguez A, Martín A, Lozano D, Córdoba JJ (2014) Development of a multiplex qPCR method for simultaneous quantification in dry-cured ham of an antifungal-peptide Penicillium chrysogenum strain used as protective culture and aflatoxin-producing moulds. Food Control 36(1):257–265

    Article  CAS  Google Scholar 

  • Bista I, Carvalho GR, Walsh K, Seymour M, Hajibabaei M, Lallias D, Christmas M, Creer S (2017) Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat Commun 8:14087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Douglas WY, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29(6):358–367

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and inference: a practical information–theoretic approach, 2nd edn. Springer, Berlin

    Google Scholar 

  • Butchart SHM, Walpole M, Collen B, Van Strien A, Scharlemann JPW, Almond REA et al (2010) Global biodiversity: indicators of recent declines. Science 1187512

  • Bylemans J, Furlan EM, Hardy CM, McGuffie P, Lintermans M, Gleeson DM (2017) An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica). Methods Ecol Evol 8(5):646–655

    Article  Google Scholar 

  • Bylemans J, Gleeson DM, Hardy CM, Furlan E (2018) Toward an ecoregion scale evaluation of eDNA metabarcoding primers: a case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia). Ecol Evol 8(17):8697–8712

    Article  PubMed  PubMed Central  Google Scholar 

  • Cambray JA (2003) Impact on indigenous species biodiversity caused by the globalisation of alien recreational freshwater fisheries. Hydrobiologia 500(1–3):217–230

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P et al (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59

    Article  CAS  PubMed  Google Scholar 

  • Casterlin ME, Reynolds WW (1978) Habitat selection by juvenile bluegill sunfish, Lepomis macrochirus. Hydrobiologia 59(1):75–79

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1(5):e1400253

    Article  PubMed  PubMed Central  Google Scholar 

  • Copp GH, Wesley KJ, Vilizzi L (2005) Pathways of ornamental and aquarium fish introductions into urban ponds of Epping Forest (London, England): the human vector. J Appl Ichthyol 21(4):263–274

    Article  Google Scholar 

  • Corfield J, Diggles B, Jubb C, McDowall RM, Moore A, Richards A, Rowe DK (2007) Draft final report for the project ‘Review of the impacts of introduced aquarium fish species that have established wild populations in Australia’. Prepared for the Australian Government Department of the Environment and Water Resources

  • Corinaldesi C, Beolchini F, Dell’Anno A (2008) Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Mol Ecol 17(17):3939–3951

    Article  CAS  PubMed  Google Scholar 

  • Darling JA, Mahon AR (2011) From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ Res 111(7):978–988

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Biggs J, Williams P, Whitfield M, Nicolet P, Sear D, Bray S, Maund S (2008) Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric Ecosyst Environ 125(1–4):1–8

    Article  Google Scholar 

  • Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F et al (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26(21):5872–5895

    Article  PubMed  Google Scholar 

  • Dougherty MM, Larson ER, Renshaw MA, Gantz CA, Egan SP, Erickson DM, Lodge DM (2016) Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. J Appl Ecol 53(3):722–732

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81(2):163–182

    Article  PubMed  Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4(4):423–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Freyhof J, Korte E (2005) The first record of Misgurnus anguillicaudatus in Germany. J Fish Biol 66(2):568–571

    Article  Google Scholar 

  • Fujioka M, Lane SJ (1997) The impact of changing irrigation practices in rice fields on frog populations of the Kanto Plain, central Japan. Ecol Res 12(1):101–108

    Article  Google Scholar 

  • Fukumoto S, Ushimaru A, Minamoto T (2015) A basin-scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: a case study of giant salamanders in Japan. J Appl Ecol 52(2):358–365

    Article  CAS  Google Scholar 

  • Fukuoka A, Takahara T, Matsumoto M, Ushimaru A, Minamoto T (2016) Establishment of detection system for native rare species, Hemigrammocypris rasborella, using environmental DNA. Jpn J Ecol 66(3):613–620 (in Japanese)

    CAS  Google Scholar 

  • Gardner TA, Barlow J, Araujo IS, Ávila-Pires TC, Bonaldo AB, Costa JE et al (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecol Lett 11(2):139–150

    Article  PubMed  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391

    Article  Google Scholar 

  • Iguchi K, Yodo T, Matsubara N (2001) Spawning habit of introduced smallmouth bass, Micropterus dolomieu. SUISANZOSHOKU 49(2):157–160 (in Japanese)

    Google Scholar 

  • Iguchi K, Yodo T, Matsubara N (2004) Spawning and brood defense of smallmouth bass under the process of invasion into a novel habitat. Environ Biol Fishes 70(3):219–225

    Article  Google Scholar 

  • Inoue K, Takei Y (2002) Diverse adaptability in Oryzias species to high environmental salinity. Zool Sci 19(7):727–734

    Article  Google Scholar 

  • Ishikawa K, Azuma A (2005) Habitat factor of Japanese rice fish in paddy field area, focusing on the structure of irrigation and drainage canal. J Rural Plan 24:19–24 (in Japanese)

    Article  Google Scholar 

  • Iwamatsu T (2006) The integrated book for the biology of the medaka. University Education Press, Okayama (in Japanese)

    Google Scholar 

  • Jeppesen E, Peder Jensen J, SØndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biol 45(2):201–218

    Article  CAS  Google Scholar 

  • Jo T, Murakami H, Masuda R, Sakata MK, Yamamoto S, Minamoto T (2017) Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Mol Ecol Resour 17(6):e25–e33

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Koya Y (2011) Annual reproductive cycle of a wild population of oriental weather loach Misgurnus anguillicaudatus in Gifu Prefecture, central Japan. Jpn J Ichthyol 58(1):1–12 (in Japanese)

    CAS  Google Scholar 

  • Kobayashi M, Yoritsune T, Suzuki S, Shimizu A, Koido M, Kawaguchi Y, Hayakawa Y, Eguchi S, Yokota H, Yamamoto Y (2012) Reproductive behavior of wild medaka in an outdoor pond. Nippon Suisan Gakkaishi 78(5):922–933 (in Japanese)

    Article  Google Scholar 

  • Lawson Handley L (2015) How will the ‘molecular revolution’ contribute to biological recording? Biol J Linn Soc 115(3):750–766

    Article  Google Scholar 

  • Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadderton L, Egan SP, Feder JL, Mahon AR, Pfrender ME (2012) Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Mol Ecol 21(11):2555–2558

    Article  PubMed  PubMed Central  Google Scholar 

  • MacRae PS, Jackson DA (2001) The influence of smallmouth bass (Micropterus dolomieu) predation and habitat complexity on the structure of littoral zone fish assemblages. Can J Fish Aquat Sci 58(2):342–351

    Google Scholar 

  • Maezono Y, Miyashita T (2003) Community-level impacts induced by introduced largemouth bass and bluegill in farm ponds in Japan. Biol Conserv 109(1):111–121

    Article  Google Scholar 

  • Martellini A, Payment P, Villemur R (2005) Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res 39(4):541–548

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki SS, Kadoya T (2015) Trends and stability of inland fishery resources in Japanese lakes: introduction of exotic piscivores as a driver. Ecol Appl 25(5):1420–1432

    Article  PubMed  Google Scholar 

  • Merkes CM, McCalla SG, Jensen NR, Gaikowski MP, Amberg JJ (2014) Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS ONE 9(11):e113346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamoto T, Yamanaka H, Takahara T, Honjo MN, Kawabata Z (2012) Surveillance of fish species composition using environmental DNA. Limnology 13(2):193–197

    Article  CAS  Google Scholar 

  • Ministry of Agriculture, Forestry and Fisheries, Japan (2018). http://www.maff.go.jp/j/nousin/bousai/bousai_saigai/b_tameike/attach/pdf/index-19.pdf. Accessed 26 Dec 2018 (in Japanese)

  • Ministry of the Environment, Japan (2018) Red list 4th edn. Brackish and freshwater fishes. https://www.env.go.jp/press/files/jp/109278.pdf. Accessed 22 Oct 2018 (in Japanese)

  • Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, Kondoh M, Iwasaki W (2015) MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci 2(7):150088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyadi D, Kawanabe H, Mizuno N (1966) Coloured illustrations of the freshwater fishes of Japan, Revised edn. Hoikusha, Osaka (in Japanese)

    Google Scholar 

  • Miyazaki C, Taniguchi Y (2009) Population densities and microhabitats of exotic mosquitofish and medaka in irrigation ditches near metropolitan areas. Wildl Conserv Jpn 12(1):13–20 (in Japanese)

    Google Scholar 

  • Nakao H, Fujita K, Kawabata T, Nakai K, Sawada T (2006) Breeding ecology of bluegill alien species, in the north basin of Lake Biwa, central Japan. Jpn J Ichthyol 53(1):55–62

    Google Scholar 

  • Natsumeda T, Takamura N, Nakagawa M, Kadono Y, Tanaka T, Mitsuhashi H (2015) Environmental and biotic characteristics to discriminate farm ponds with and without exotic largemouth bass and bluegill in western Japan. Limnology 16(3):139–148 (in Japanese)

    Article  Google Scholar 

  • Nishikawa U, Imada M, Akasaka M, Takamura N (2009) Effects of pond management on the distributions of aquatic invaders in Japanese farm ponds. Jpn J Limnol 70:261–266 (in Japanese)

    Article  Google Scholar 

  • Pitt AL, Shinskie JL, Tavano JJ, Hartzell SM, Delahunty T, Spear SF (2017) Decline of a giant salamander assessed with historical records, environmental DNA and multi-scale habitat data. Freshw Biol 62(6):967–976

    Article  CAS  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Robinson CV, Webster TMU, Cable J, James J, Consuegra S (2018) Simultaneous detection of invasive signal crayfish, endangered white-clawed crayfish and the crayfish plague pathogen using environmental DNA. Biol Conserv 222:241–252

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin EF et al (2009) A safe operating space for humanity. Nature 461(7263):472

    Article  CAS  PubMed  Google Scholar 

  • Saeki A (1956) The noxious condition of the water in the newly constructed concrete aquarium. Jpn J Limnol 18(3–4):118–124

    Article  Google Scholar 

  • Seymour M, Durance I, Cosby BJ, Ransom-Jones E, Deiner K, Ormerod SJ, Colbourne JK, Wilgar G, Carvalho GR, de Bruyn M, Edwards F, Emmett BA, Bik HM, Creer S (2018) Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun Biol 1(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shindo K, Ohta H, Fujimoto Y (2006) Results in extermination efforts of largemouth bass in Lake Izunuma-Uchinuma during 2004-2006. Izunuma-Uchinuma Wetl Res 1:65–72 (in Japanese)

    Google Scholar 

  • Shirakawa T, Nishiyama K (1991) Degradation of DNA by Sodium Hypochlorite. Bull School Allied Med Sci Kobe Univ 7:17–22 (in Japanese)

    Google Scholar 

  • Sigsgaard EE, Nielsen IB, Bach SS, Lorenzen ED, Robinson DP, Knudsen SW, Pedersen MW, Jaidah MA, Orlando L, Wilerslev E, Møller PR, Thomsen PF (2017) Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat Ecol Evol 1(1):0004

    Article  Google Scholar 

  • Spear SF, Groves JD, Williams LA, Waits LP (2015) Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) monitoring program. Biol Conserv 183:38–45

    Article  Google Scholar 

  • Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Mol Ecol 21(8):1789–1793

    Article  CAS  PubMed  Google Scholar 

  • Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z (2012) Estimation of fish biomass using environmental DNA. PLoS ONE 7(4):e35868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara T, Minamoto T, Doi H (2013) Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8(2):e56584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi MK, Meyer MJ, Mcphee C, Gaston JR, Venesky MD, Case BF (2018) Seasonal and diel signature of eastern hellbender environmental DNA. J Wildl Manag 82(1):217–225

    Article  Google Scholar 

  • Takamura N (2003) A research for pond conservation in Japan. J Jpn Soc Water Environ 26(5):269–274 (in Japanese)

    CAS  Google Scholar 

  • Takamura K (2007) Performance as a fish predator of largemouth bass [Micropterus salmoides (Lacepède)] invading Japanese freshwaters: a review. Ecol Res 22(6):940–946

    Article  Google Scholar 

  • Tanaka M (1999) Influence of different aquatic habitats on distribution and population density of Misgurnus anguillicaudatus in paddy fields. Jpn J Ichthyol 46(2):75–81 (in Japanese)

    Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18

    Article  Google Scholar 

  • Toyama F, Akasaka M (2018) Ignoring spatial heterogeneity in social conditions overestimates extinction risk of aquatic macrophytes. Divers Distrib 24:1267–1276

    Article  Google Scholar 

  • Tsuji S, Iguchi Y, Shibata N, Teramura I, Kitagawa T, Yamanaka H (2018) Real-time multiplex PCR for simultaneous detection of multiple species from environmental DNA: an application on two Japanese medaka species. Sci Rep 8(1):9138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turak E, Harrison I, Dudgeon D, Abell R, Bush A, Darwall W et al (2016) Essential Biodiversity Variables for measuring change in global freshwater biodiversity. Biol Conserv 213:272–279

    Article  Google Scholar 

  • Turner CR, Miller DJ, Coyne KJ, Corush J (2014) Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.). PLoS ONE 9(12):e114329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchii K, Doi H, Minamoto T (2016) A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes. Mol Ecol Resour 16(2):415–422

    Article  CAS  PubMed  Google Scholar 

  • Usio N, Nakagawa M, Aoki T, Higuchi S, Kadono Y, Akasaka M, Takamura N (2017) Effects of land use on trophic states and multi-taxonomic diversity in Japanese farm ponds. Agric Ecosyst Environ 247:205–215

    Article  Google Scholar 

  • Wilcox TM, McKelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, Schwartz MK (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS ONE 8(3):e59520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115(2):329–341

    Article  Google Scholar 

  • Wozney KM, Wilson CC (2017) Quantitative PCR multiplexes for simultaneous multispecies detection of Asian carp eDNA. J Great Lakes Res 43(4):771–776

    Article  CAS  Google Scholar 

  • Xu N, Zhu B, Shi F, Shao K, Que Y, Li W, Li W, Jiao W, Tian H, Xu D, Chang J (2018) Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA. Sci Nat 105(62):11–12

    Google Scholar 

  • Yamamoto S, Masuda R, Sato Y, Sado T, Araki H, Kondoh M, Minamoto T, Miya M (2017) Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci Rep 7:40368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka H, Minamoto T, Matsuura J, Sakurai S, Tsuji S, Motozawa H et al (2017) A simple method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant. Limnology 18(2):233–241

    Article  CAS  Google Scholar 

  • Yodo T, Mukai T, Taniguchi Y, Nakai K, Senou H, Maruyama T (2005) Report of results of a questionnaire of damages on aquatic organisms by three species of Centrarchidae conducted by the nature conservation committee of the Ichthyological Society of Japan. Jpn J Ichthyol 52:74–80 (in Japanese)

    Google Scholar 

  • Yonekura R, Kita M, Yuma M (2004) Species diversity in native fish community in Japan: comparison between non-invaded and invaded ponds by exotic fish. Ichthyol Res 51(2):176–179

    Article  Google Scholar 

  • Yoshida T, Goka K, Ishihama F, Ishihara M, Kudo SI (2007) Biological invasion as a natural experiment of the evolutionary processes: introduction of the special feature. Ecol Res 22(6):849–854

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ayaka Fujiwara and Masayuki K. Sakata (Kobe University) for helping field surveys. We thank Dr. Yasuoki Takami and Dr. Ryohei Nakao (Kobe University) for helpful comments and suggestions regarding the experimental design and interpretation of the results. We sincerely thank three anonymous reviewers who provided fruitful comments and suggestions to improve the manuscript. This study was supported by the Environment Research and Technology Development Fund (4RF-1302 and 4-1602) from the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Contributions

AF, AU, and TM conceived and designed the experiments. TJ, AF, KU, AU, and TM conducted water sampling. AF performed the molecular analysis. TJ, AF, and KU analyzed the data. TJ and AF wrote the first draft of the manuscript. All authors edited and provided feedback on the manuscript.

Corresponding author

Correspondence to Toshiaki Jo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Toshiaki Jo and Arisa Fukuoka are co-first author of this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, T., Fukuoka, A., Uchida, K. et al. Multiplex real-time PCR enables the simultaneous detection of environmental DNA from freshwater fishes: a case study of three exotic and three threatened native fishes in Japan. Biol Invasions 22, 455–471 (2020). https://doi.org/10.1007/s10530-019-02102-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-02102-w

Keywords

Navigation