Skip to main content
Log in

Biosorption of Cd(II) and Pb(II) onto brown seaweed, Lobophora variegata (Lamouroux): kinetic and equilibrium studies

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The present work deals with the biosorption performance of raw and chemically modified biomass of the brown seaweed Lobophora variegata for removal of Cd(II) and Pb(II) from aqueous solution. The biosorption capacity was significantly altered by pH of the solution delineating that the higher the pH, the higher the Cd(II) and Pb(II) removal. Kinetic and isotherm experiments were carried out at the optimal pH 5.0. The metal removal rates were conspicuously rapid wherein 90% of the total sorption occurred within 90 min. Biomass treated with CaCl2 demonstrated the highest potential for the sorption of the metal ions with the maximum uptake capacities i.e. 1.71 and 1.79 mmol g−1 for Cd(II) and Pb(II), respectively. Kinetic data were satisfactorily manifested by a pseudo-second order chemical sorption process. The process mechanism consisting of both surface adsorption and pore diffusion was found to be complex. The sorption data have been analyzed and fitted to sorption isotherm of the Freundlich, Langmuir, and Redlich–Peterson models. The regression coefficient for both Langmuir and Redlich–Peterson isotherms were higher than those secured for Freundlich isotherm implying that the biosorption system is possibly monolayer coverage of the L. variegata surface by the cadmium and lead ions. FT-IR studies revealed that Cd(II) and Pb(II) binding to L. variegata occurred primarily through biomass carboxyl groups accompanied by momentous interactions of the biomass amino and amide groups. In this study, we have observed that Lvariegata had maximum biosorption capacity for Cd(II) and Pb(II) reported so far for any marine algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar-Carrillo J, Garrido F, Barrios L, Garcia-Gonzalez MT (2006) Sorption of As, Cd and Tl as influenced by industrial by-products applied to an acidic soil: equilibrium and kinetic experiments. Chemosphere 65:2377–2387

    Article  PubMed  CAS  Google Scholar 

  • Basha S, Murthy ZVP (2007a) Seaweeds for engineering metal biosorption: a review. In: Mason LG (ed) Focus on hazardous materials research. Nova Science Publishers, New York, pp 165–209

    Google Scholar 

  • Basha S, Murthy ZVP (2007b) Kinetic and equilibrium models for biosorption of Cr(VI) on chemically modified seaweed, Cystoseira indica. Process Biochem 42:1521–1529

    Article  CAS  Google Scholar 

  • Basha S, Murthy ZVP, Jha B (2008) Biosorption of hexavalent chromium by chemically modified seaweed, Cystoseira indica. Chem Eng J 137:480–488

    Article  CAS  Google Scholar 

  • Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites 2. J Am Chem Soc 69:2836–2848

    Article  CAS  Google Scholar 

  • Carson BL, Ellis HV, McCann JL (1986) Toxicology and biological monitoring of metals in humans. Lewis Publishers, Michigan, pp 71–133

    Google Scholar 

  • Castaldi P, Santona L, Enzo S, Melis P (2008) Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations. J Hazard Mater. doi:10.1016/j.jhazmat.2007.12.040

  • Chemielewski MJS, Urbanski TS, Migdal W (1997) Separation technologies for metal recovery from industrial wastes. Hydrometallurgy 45:333–334

    Article  Google Scholar 

  • Chen WM, Wu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371

    Article  PubMed  CAS  Google Scholar 

  • Christensen BE, Indergaard M, Smidsrød O (1990) Polysaccharide research in Trondheim. Carbohyd Poly 13:239–255

    Article  CAS  Google Scholar 

  • Chu W (1999) Lead metal removal by recycled alum sludge. Water Res 33:3019–3025

    Article  CAS  Google Scholar 

  • da Costa ACA, Leite SGF (1991) Metals biosorption by sodium alginate immobilized Chlorella homphaera cells. Biotechnol Lett 13:559–562

    Article  Google Scholar 

  • Davis TA, Lanes F, Volesky B, Mucci A (2003a) Metal selectiviry of Sargassum sp. and their alginates in relation to their α-l-guluronic acid content and conformation. Environ Sci Technol 37:261–267

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003b) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Zhu X, Wang X, Su Y, Su H (2007) Biosorption of copper(II) from aqueous solutions by green alga Cladophora fascicularis. Biodegradation 18:393–402

    Article  PubMed  CAS  Google Scholar 

  • El-Bishtawi RF, Ali AA-H (2001) Sorption kinetics of lead ions by zeolite tuff. J Environ Sci Health A36:1055–1072

    Article  CAS  Google Scholar 

  • El-Kamash AM, Zaki AA, Abed-El-Geleel M (2005) Modeling batch kinetics and thermodynamics of zinc and cadmium removal from waste solutions using synthetic zeolite A. J Hazard Mater 127:211–220

    Article  PubMed  CAS  Google Scholar 

  • Figueira MM, Volesky B, Ciminelli VST, Roddick FA (2000) Biosorption of metals in brown seaweed biomass. Water Res 34:196–204

    Article  CAS  Google Scholar 

  • Fourest E, Serre A, Roux JC (1996) Contribution of carboxyl groups to heavy metal binding sites in fungal wall. Toxicol Environ Chem 54:1–4

    CAS  Google Scholar 

  • Freitas OMM, Martins RJE, Delerue-Matos CM, Boaventura RAR (2008) Removal of Cd (II), Zn(II) and Pb (II) from aqueous solutions by brown marine macro algae: kinetic modeling. J Hazard Mater. doi:10.1016/j.jhazmat.2007.08.081

  • Freundlich HMF (1906) Über die adsorption in lösungen. Z Phys Chem (Leipzig) 57A:385–470

    Google Scholar 

  • Gardea-Torresdey JL, Becker-Hapak MK, Hosea JM, Darnall DW (1990) Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ Sci Technol 24:1372–1378

    Article  CAS  Google Scholar 

  • Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fund 5:212–223

    Article  CAS  Google Scholar 

  • Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green and red seaweeds. Chem Eng J 97:249–255

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1988) The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng 76:822–827

    Article  Google Scholar 

  • Ho YS, Ofomaja AE (2005) Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochem 40:3455–3461

    Article  CAS  Google Scholar 

  • Kundu S, Gupta AK (2006) Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. Chem Eng J 122:93–106

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, K Sven. Vetenskapsakad Handl 24:1–39

    Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. I. solids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Lehmann RG, Hater RD (1984) Assessment of copper-soil bond strength by desorption kinetics. Soil Sci Soc Am J 48:769–772

    CAS  Google Scholar 

  • Lodeiro P, Barriada JL, Herrero R, Sastre de Vicente ME (2006) The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies. Environ Pollut 142:264–273

    Article  PubMed  CAS  Google Scholar 

  • Matheickal JT, Yu Q (1997) Biosorption of heavy metals from wastewater using Australian marine algae biomass. Dev Chem Mineral Proc 5:5–20

    Google Scholar 

  • Matheickal JT, Yu Q (1999) Biosorption of lead (II) and copper (II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour Technol 69:223–229

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q, Woodburn GM (1999) Biosorption of cadmium (II) from aqueous solutions by pre-treated biomass of marine alga Durvillaea potatorum. Water Res 33:335–342

    Article  CAS  Google Scholar 

  • Matlock MM, Howerton BS, Atwood DA (2001) Irreversible precipitation of mercury and lead. J Hazard Mater 84:72–83

    Article  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  PubMed  CAS  Google Scholar 

  • Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36:2304–2318

    Article  PubMed  CAS  Google Scholar 

  • Noghabi KA, Zahiri HS, Yoon SC (2007) The production of a cold-induced extracellular biopolymer by Pseudomonas fluorescens BM07 under various growth conditions and its role in heavy metals absorption. Process Biochem 42:847–855

    Article  CAS  Google Scholar 

  • Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF (2006) Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour Technol 97:2321–2329

    PubMed  CAS  Google Scholar 

  • Rakhshaee R, Khosravi M, Ganji MT (2006) Kinetic modeling and thermodynamic study to remove Pb (II), Cd (II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. J Hazard Mater B134:120–129

    Article  CAS  Google Scholar 

  • Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026

    Article  CAS  Google Scholar 

  • Rees DA (1981) Polysaccharide shape and their interactions—some recent advances. Pure Appl Chem 53:1–14

    Article  CAS  Google Scholar 

  • Sag Y, Kutsal T (1996) Fully competitive biosorption of chromium (VI) and iron(III) ions from binary metal mixtures by R. arrhizus: use of the competitive Langmuir model. Process Biochem 31:561–579

    Article  CAS  Google Scholar 

  • Sankar M, Sekaran G, Sadulla S, Ramasami T (1999) Removal of diazo and triphenylmethane dyes from aqueous solutions through an adsorption process. J Chem Technol Biotechnol 74:337–344

    Article  CAS  Google Scholar 

  • Sarı A, Tuzen M (2008) Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152:302–308

    Article  PubMed  CAS  Google Scholar 

  • Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141

    Article  PubMed  CAS  Google Scholar 

  • Sheng PX, Ting YP, Chen JP (2007) Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single- and multiple-metal systems. Ind Eng Chem Res 46:2438–2444

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133:304–308

    Article  PubMed  CAS  Google Scholar 

  • Wang XS, Qin Y, Li ZF (2006) Biosorption of zinc from aqueous solutions by rice bran: kinetics and equilibrium studies. Sep Sci Technol 41:747–756

    Article  CAS  Google Scholar 

  • Weber WJ Jr, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civil Eng 89:31–60

    Google Scholar 

  • Yabe MJS, de Oliveira E (2003) Heavy metals removal in industrial effluents by sequential adsorbent treatment. Adv Environ Res 7:263–272

    Article  Google Scholar 

  • Yu Q, Matheickal JT, Yin P, Kaewsarn P (1999) Heavy metal uptake capacities of common marine macro algal biomass. Water Res 33:1534–1537

    Article  CAS  Google Scholar 

  • Yun YS (2004) Characterization of functional groups of protonated Sargassum polycystum biomass capable of binding protons and metal ions. J Microbiol Biotechnol 14:29–34

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the kind support of Dr. P. K. Ghosh, Dirctor, CSMCRI during the course of the study. The financial support received from GSBTM, Department of Science and Technology, Govt. of Gujarat and Ministry of Earth Sciences, Govt. of India for carrying out this project is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavanath Jha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, B., Basha, S., Jaiswar, S. et al. Biosorption of Cd(II) and Pb(II) onto brown seaweed, Lobophora variegata (Lamouroux): kinetic and equilibrium studies. Biodegradation 20, 1–13 (2009). https://doi.org/10.1007/s10532-008-9194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9194-2

Keywords

Navigation