Skip to main content
Log in

Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Phenol is one of the major toxic pollutants in the wastes generated by a number of industries and needs to be eliminated before their discharge. Although microbial degradation is a preferred method of waste treatment for phenol removal, the general inability of the degrading strains to tolerate higher substrate concentrations has been a bottleneck. Immobilization of the microorganism in suitable matrices has been shown to circumvent this problem to some extent. In this study, cells of Pseudomonas sp. CP4, a laboratory isolate that degrades phenol, cresols, and other aromatics, were immobilized by entrapment in Ca-alginate and agar gel beads, separately and their performance in a fluidized bed bioreactor was compared. In batch runs, with an aeration rate of 1 vol−1 vol−1 min−1, at 30°C and pH 7.0 ± 0.2, agar-encapsulated cells degraded up to 3000 mg l−1 of phenol as compared to 1500 mg l−1 by Ca-alginate-entrapped cells whereas free cells could tolerate only 1000 mg l−1. In a continuous process with Ca-alginate entrapped cells a degradation rate of 200 mg phenol l−1 h−1 was obtained while agar-entrapped cells were far superior and could withstand and degrade up to 4000 mg phenol l−1 in the feed with a maximum degradation rate of 400 mg phenol l−1 h−1. The results indicate a clear possibility of development of an efficient treatment technology for phenol containing waste waters with the agar-entrapped bacterial strain, Pseudomonas sp. CP4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd-El-Haleem D, Beshay U, Abdelhamid AO, Moawad H, Zaki S (2003) Effects of mixed nitrogen sources on biodegradation of phenol by immobilized Acinetobacter sp. strain W-17. Afr J Biotechnol 2:8–12

    CAS  Google Scholar 

  • Agarry SE, Durojaiye AO, Solomon BO (2008) Microbial degradation of phenols: a review. Int J Environ Pollut 32:12–28

    Article  CAS  Google Scholar 

  • Ahamad PYA, Kunhi AAM (1996) Degradation of phenol through ortho-cleavage pathway by Pseudomonas stutzeri strain SPC-2. Lett Appl Microbiol 22:26–29. doi:10.1111lj.1472-765X.1996.tbOl101.x

    Article  Google Scholar 

  • Ahamad PYA, Kunhi AAM (1999) Degradation of high concentrations of cresols by Pseudomonas sp. CP4. World J Microbiol Biotechnol 15:28–283. doi:10.1023/A:1008821120432

    Article  Google Scholar 

  • Ahamad PYA, Varadaraj MC, Kunhi AAM (1996) Isolation and characterisation of phenol and cresol degrading pseudomonads. In: Kahlon RS (ed) Perspectives in microbiology. National Agricultural Technology Information Centre, Ludhiana, pp 35–41

    Google Scholar 

  • Ahamad PYA, Kunhi AAM, Divakar S (2001) New metabolic pathway for o-cresol degradation by Pseudomonas sp. CP4 as evidenced by H NMR spectroscopic studies. World J Microbiol Biotechnol 17:371–377. doi:10.10231A:1016611702882

    Article  CAS  Google Scholar 

  • Amor L, Eiroa M, Kennes C, Veiga MC (2005) Phenol biodegradation and its effect on the nitrification process. Water Res 39:2915–2920

    Article  PubMed  CAS  Google Scholar 

  • Anselmo AM, Cabral JMS, Novais JM (1989) The adsorption of Fusarium flocciferum spores on celite particles and their use in the degradation of phenol. Appl Microbiol Biotechnol 31:200–203. doi:10.1007/BF00262463

    Article  CAS  Google Scholar 

  • Babu KS, Ajith-Kumar PV, Kunhi AAM (1995a) Simultaneous degradation of 3-chlorobenzoate and phenolic compounds by a defined mixed culture of Pseudomonas spp. World J Microbiol Biotechnol 11:148–152. doi:l0.l007/BF00704636

    Article  CAS  Google Scholar 

  • Babu KS, Ajith-Kumar PV, Kunhi AAM (1995b) Mineralisation of phenol and its derivatives by Pseudomnas sp. strain CP4. World J Microbiol Biotechnol 11:661–664. doi:l0.l007/BF00361012

    Article  CAS  Google Scholar 

  • Bajaj M, Gallert C, Winter J (2008) Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor. Bioresour Technol 99:8376–8381

    Article  PubMed  CAS  Google Scholar 

  • Bandhyopadhyay K, Das D, Maiti BR (1999) Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation. Appl Microbiol Biotechnol 51:891–895. doi:10.1007/s002530051479

    Article  PubMed  CAS  Google Scholar 

  • Bettmann H, Rehm HJ (1984) Degradation of phenol by polymer entrapped microorganisms. Appl Microbiol Biotechnol 20:285–290

    Article  CAS  Google Scholar 

  • Bettmann H, Rehm HJ (1985) Continuous degradation of phenol(s) by Pseudomonas putida P8 entrapped in polyacrylamide-hydrazide. Appl Microbiol Biotechnol 22:389–493

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Surampalli RY, Misra S, Tyagi RD, Meunier N, et Blais J-F (2006) Bioremediation of hazardous wastes—a review. Pract Period Hazard Toxicol Radioact Waste Manag 10:59–72

    Article  CAS  Google Scholar 

  • Chen KC, Lin YH, Chen WH, Liu YC (2002) Degradation of phenol by PAA-immobilized Candida tropicalis. Enzyme Microb Technol 31:490–497

    Article  CAS  Google Scholar 

  • Chung T-P, Tseng H-Y, Juang R-S (2003) Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem 38:1497–1507

    Article  CAS  Google Scholar 

  • CMR (2005) Phenol: chemical profile. Chemical Market Reporter, pp 34–35

  • Dainty AL, Goulding KH, Robinson PK, Simpkins I, Trevan MD (1985) Stability of alginate-immobilized algal cells. Biotechnol Bioeng 28:210–216. doi:10.1002/bit.260280210

    Article  Google Scholar 

  • Dursun AY, Tepe O (2005) Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J Hazard Mater 126:105–111

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed WS, Ibrahim MK, Abu-Shady M, El-Beih F, Ohmura N, Saiki H, Ando A (2003) Isolation and characterization of phenol-catabolizing bacteria from a coking plant. Biosci Biotechnol Biochem 67:2026–2029

    Article  PubMed  CAS  Google Scholar 

  • Feitkenhauer H, Schnicke S, Muller R, Markl H (2003) Kinetic parameters of continuous cultures of Bacillus thermoleovorans sp. A2 degrading phenol at 65°C. J Biotechnol 103:29–135

    Article  Google Scholar 

  • Fialova A, Boschke E, Bley T (2004) Rapid monitoring of the biodegradation of phenol-like compounds by the yeast Candida maltosa using BOD measurements. Int Biodeterior Biodegradation 54:69–76

    Article  CAS  Google Scholar 

  • Hannaford AM, Kuek C (1999) Aerobic batch degradation of phenol using immobilized Pseudomonas putida. J Ind Microbiol Biotechnol 22:121–126. doi:10.1038/sj.jim.2900617

    Article  CAS  Google Scholar 

  • Juárez-Ramírez C, Ruiz-Ordaz N, Cristiani-Urbina E, Galíndez-Mayer J (2001) Degradation kinetics of phenol by immobilized cells of Candida tropicalis in a fluidized bed reactor. World J Microbiol Biotechnol 17:697–705. doi:10.1023/A:1012979100827

    Article  Google Scholar 

  • Kapoor A, Kumar R, Kumar A, Sharma A, Prasad S (1998) Application of immobilized mixed bacterial culture for the degradation of phenol present in oil refinery effluent. J Environ Sci Health A 33:1009–1021. doi:10.1080/10934529809376773

    Article  Google Scholar 

  • Karigar C, Mahesh A, Nagenahalli M, Yun DJ (2006) Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation 17:47–55. doi:10.1007/s10532-005-3048-y

    Article  PubMed  CAS  Google Scholar 

  • Keweloh H, Heipieper HJ, Rehm HJ (1989) Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl Microbiol Biotechnol 31:383–389

    Article  CAS  Google Scholar 

  • Kumar A, Kumar S, Kumar S (2005) Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem Eng J 22:151–159

    Article  CAS  Google Scholar 

  • Lacoste RJ, Venable SH, Stone JC (1959) Modified 4-aminoantipyrene colorimetric method for phenols. Applications to an acrylic monomer. Anal Chem 31:1246–1249. doi:10.1021/ac60151a007

    Article  CAS  Google Scholar 

  • Lakhwala FS, Goldberg BS, Sofer SS (1992) A comparative study of gel entrapped and membrane attached microbial reactors for biodegrading phenol. Bioprocess Eng 8:9–18. doi:10.1007/BF00369258

    Article  CAS  Google Scholar 

  • Liu YJ, Zhang AN, Wang XC (2009) Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochem Eng J 44:187–192. doi:10.1016/j.bej.2008.12.001

    Article  CAS  Google Scholar 

  • Loh KC, Chung TS, Ang WF (2000) Immobilized-cell membrane bioreactor for high-strength phenol wastewater. J Environ Eng 126:75–79

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Ma H, Li G, Fang P, Zhang Y, Xu D (2010) Identification of phenol-degrading Nocardia sp. strain C-14-1 and characterization of its ring-cleavage 2,3-dioxygenase. Int J Biol 2:79–83

    CAS  Google Scholar 

  • Mailin M, Firdausi R (2007) The kinetics of phenol degradation by immobilized Pseudomonas sp. in a repeated-batch process. Malays Appl Biol 36:73–78

    Google Scholar 

  • Marrot B, Barrios-Martinez A, Moulin P, Roche N (2008) Biodegradation of high phenol concentration in a membrane bioreactor. Int J Chem React Eng 6:1–12

    Google Scholar 

  • Mordocco A, Kuek C, Jenkins R (1999) Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme Microb Technol 25:530–536

    Article  CAS  Google Scholar 

  • Ogbonna JC, Matsumura M, Kataoka H (1991) Effective oxygenation of immobilized cells through the reduction in bead diameters: a review. Process Biochem 26:109–121

    Article  CAS  Google Scholar 

  • Prieto M, Hidalgo A, Serra JL, Llama MJ (2002) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite in a packed-bed reactor. J Biotechnol 97:1–11

    Article  CAS  Google Scholar 

  • Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New York

    Google Scholar 

  • Santos VL, Heilbuth NM, Braga DT, Monteiro AS, Linardi VR (2003) Phenol degradation by a Graphium sp. FIB4 isolated from industrial effluents. J Basic Microbiol 43:238–248

    Article  PubMed  CAS  Google Scholar 

  • Shetty KV, Ramanjaneyulu R, Srinikethan G (2007) Biological phenol removal using immobilized cells in a pulsed plate bioreactor: effect of dilution rate and influent phenol concentration. J Hazard Mater 149:452–459. doi:10.1016/j.jhazmat.2007.04.024

    Article  CAS  Google Scholar 

  • Tay J-H, Jiang H-L, Tay ST-L (2004) High-rate biodegradation of phenol by aerobically grown microbial granules. J Environ Eng 130:1415–1423. doi:10.1061/(ASCE)0733-9372(2004)130:12(1415)

    Article  CAS  Google Scholar 

  • Tziotzios G, Economoua ChN, Lyberatos G, Vayenas DV (2007) Effect of the specific surface area and operating mode on biological phenol removal using packed bed reactors. Desalination 211:128–137

    Article  CAS  Google Scholar 

  • Watanabe K, Miyashita M, Harayama S (2000) Starvation improves survival of bacteria introduced into activated sludge. Appl Environ Microbiol 66:3905–3910

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Jianping W, Hongmei L, Suliang Y, Zongding H (2005) The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochem Eng J 24:243–247. doi:10.1016/j.bej.2005.02.016

    Article  Google Scholar 

  • Yordanova G, Ivanova D, Godjevargova T, Krastanov A (2009) Biodegradation of phenol by immobilized Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane. Biodegradation 20:717–726. doi:10.1007/s10532-009-9259-x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Director, Central Food Technological Research Institute, Mysore, India for the facilities. The authors also acknowledge with gratitude the help provided by Abdul Basheer in the preparation of the graphs. PYAA gratefully acknowledges the award of a Senior Research Fellowship by the Council of Scientific and Industrial Research, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mohammad Kunhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aneez Ahamad, P.Y., Mohammad Kunhi, A.A. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation 22, 253–265 (2011). https://doi.org/10.1007/s10532-010-9392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9392-6

Keywords

Navigation