Skip to main content

Advertisement

Log in

Isotope Systematics of Sulfate-oxygen and Sulfate-sulfur in Six European Peatlands

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Oxygen (O) and sulfur (S) isotope systematics in bog water sulfates were determined for six Sphagnum dominated wetlands located in the British Isles and the Czech Republic, Central Europe. Comparison of a polluted and unpolluted site showed that 4 times higher atmospheric S inputs led to 3 times higher bog water sulfate concentrations and substrate S concentrations, 3 times increased ranges of substrate S concentrations, and 3 times increased ranges of δ34S values. Sites with elevated atmospheric S inputs exhibited greater geochemical variability in wetland S species. Sulfate O–S isotope composition of bog pore water at a depth of 40 cm below surface differed from that of surface bog water, indicating that dissimilatory bacterial sulfate reduction, a process known to discriminate against the heavier isotopes 18O and 34S, occurred in surface peat layers. While bacterial sulfate reduction remained to be one of the main isotope-selective processes for sulfate in peat, it could not fully explain the O–S isotope systematics of peat waters. The ‘residual’ sulfate was not simultaneously enriched in the heavier isotopes 18O and 34S. Mixing of residual sulfate following bacterial sulfate reduction with the product of S2− reoxidation, cleavage of esters, and isotope exchange reactions may have contributed to the decoupling of the δ34Sso4 and δ18Sso4 values. Large within-site differences in δ18Sso4 and δ34Sso4 (up to 13 and 15‰, respectively) indicated little communication between the 0 and 40 cm peat depth at some sites. Extremely high δ18Sso4 and δ34Sso4 values found in several peat bog water samples from Connemara (Ireland), Thorne Moors (England) and Ocean (Czech Republic) were not seen in streams draining the wetlands. Direct runoff of atmogenic sulfate constituted a significant portion of the bog outflow. At the wetland scale, zones of dissimilatory bacterial sulfate reduction form pockets whose lateral hydrological fluxes are small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Aharon B. Fu (2000) ArticleTitleMicrobial sulfate reduction rates and sulfur and oxygen fractionations at oil and gas seeps in deepwater Gulf of Mexico Geochim. Cosmochim. Acta 64 233–246 Occurrence Handle10.1016/S0016-7037(99)00292-6

    Article  Google Scholar 

  • C. Alewell A. Giesemann (1996) ArticleTitleSulfate reduction in a forested catchment as indicated by δ34S values of sulfate in soil solutions and runoff Isotopes Environ. Health Studies 32 203–210

    Google Scholar 

  • C. Alewell M. Novak (2001) ArticleTitleSpotting zones of dissimilatory sulfate reduction in a forested catchment: the 34S–35S approach Environ. Pollut. 112 369–377 Occurrence Handle10.1016/S0269-7491(00)00137-8

    Article  Google Scholar 

  • J. Balesdent C. Girardin A. Mariotti (1993) ArticleTitleSite-related δ13C of tree leaves and soil organic matter in a temperate forest Ecology 74 1713–1721

    Google Scholar 

  • S. Bottrell M. Novak (1997) ArticleTitleSulpur isotopic study of two pristine Sphagnum bogs in the western British Isles J. Ecol. 85 125–132

    Google Scholar 

  • K. Brown (1985) ArticleTitleSulphur distribution and metabolism in waterlogged peat Soil Biol. Biochem. 17 39–45

    Google Scholar 

  • F. Buzek (1984) ArticleTitleA rapid procedure for preparing oxygen-18 determination in water samples Isotopenpraxis 19 70–72

    Google Scholar 

  • D.E. Canfield (2001) ArticleTitleIsotope fractionation by natural populations of sulfate-reducing bacteria Geochim. Cosmochim. Acta 65 1117–1124 Occurrence Handle10.1016/S0016-7037(00)00584-6

    Article  Google Scholar 

  • C. Caufield (1991) Thorne Moors The Sumach Press UK

    Google Scholar 

  • J. Chakrabarti (1978) Analytical procedures for sulfur in coal desulfurization products C.J. Karr (Eds) Analytical Methods for Coal and Coal Products Academic Press New York 279–323

    Google Scholar 

  • N.B. Dise E.S. Verry (2001) ArticleTitleSuppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain Biogeochemistry 53 143–160 Occurrence Handle10.1023/A:1010774610050

    Article  Google Scholar 

  • Z. Dohnal M. Kunst V. Mejstrik S. Raucina V. Vydra (1965) Czechoslovak Peatlands Czechoslovak Academy of Sciences Czechoslovakia (in Czech)

    Google Scholar 

  • Fottova D. 2001. Trends in sulfur and nitrogen deposition in the GEOMON network of small catchments. Proceedings of the Symposium ‘Atmosphere 2001’. Brno, Czech Republic, May 14–16, 2001. pp. 240–243.

  • D. Fottova (2003) ArticleTitleTrends in sulfur and nitrogen deposition fluxes in the GEOMON network, Czech Republic, between 1994 and 2000 Water Air Soil Pollut. 150 73–87

    Google Scholar 

  • D. Fottova I. Skorepova (1998) ArticleTitleChanges in mass element fluxes and their importance for critical loads: Geomon network, Czech Republic Water Air Soil Pollut. 105 365–376

    Google Scholar 

  • P. Fritz G.M. Basharmal R.J. Drimmie J. Ibsen R.M. Qureshi (1989) ArticleTitleOxygen isotope exchange between sulphate and water during bacterial reduction of sulphate Chem. Geol. 79 99–105

    Google Scholar 

  • H. Groscheova M. Novak C. Alewell (2000) ArticleTitleChanges in the δ34S ratio of pore-water sulfate in incubated Sphagnum peat Wetlands 20 62–69

    Google Scholar 

  • A.G. Harrison H.G. Thode (1958) ArticleTitleMechanism of the bacterial reduction of sulphate from isotope fractionation studies Trans. Faraday Soc. 54 84–92

    Google Scholar 

  • J. Holden (2004) ArticleTitleHydrological connectivity of soil pipes determined by ground-penetrating radar tracer detection Earth Surface Process. Landforms 29 437–442

    Google Scholar 

  • Holden J. and Burt T.P. 2003a. Runoff production in blanket peat covered catchments. Water Resour. Res. 39, Art. No. 1191.

  • J. Holden T.P. Burt (2003b) ArticleTitleHydraulic conductivity in upland blanket peat: measurement and variability Hydrol. Processes 17 1227–1237

    Google Scholar 

  • B.D. Holt R. Kumar (1981) ArticleTitleOxygen-18 study of high-temperature air oxidation of SO2 Atmos. Environ. 18 2089–2094

    Google Scholar 

  • B.D. Holt R. Kumar P.T. Cunningham (1982) ArticleTitlePrimary sulfates in atmospheric sulfates: estimation by oxygen isotope ratio measurements Science 217 51–52

    Google Scholar 

  • A.J. Hughes J.H. Tellam J.W. Lloyd K.A. Stagg S.H. Bottrell A.P. Barker M.H. Barret (1999) ArticleTitleSulphate isotope signatures in borehole waters from three urban Triassic sandstone aquifers, UK IAHS Publication 259 143–149

    Google Scholar 

  • IAEA 2003. http://isobis.iaea.org.

  • A.C. Jermy J.A. Crabbe (1978) The Island of Mull British Museum London UK

    Google Scholar 

  • I.R. Kaplan S.C. Rittenberg (1964) ArticleTitleMicrobiological fractionation of sulfur isotopes J. Gen. Microbiol. 26 127–163

    Google Scholar 

  • W.W. Kellog R.D. Cadle E.R. Allen A.L. Lazrus E.A. Martell (1972) ArticleTitleThe sulfur cycle Science 175 587–596

    Google Scholar 

  • Kram P., Hruska J. and Fottova D. 2004. Modelling of the effects of air pollution, climate change and forest management practices on the chemistry of surface waters and soils of the Czech Republic. Final Report, Czech Granting Agency, Project No. 526/1135, Prague, 62 pp.

  • H.R. Krouse W.D. Gould R.G.L. McCready S. Rajan (1991) ArticleTitle18O incorporation into sulphate during the bacterial oxidation of sulphide minerals and the potential for oxygen isotope exchange between O2H2O and oxidized sulphur intermediates Earth Planet. Sci. Lett. 107 90–94 Occurrence Handle10.1016/0012-821X(91)90045-J

    Article  Google Scholar 

  • Krouse H.R. and Grinenko V.A. 1991. Stable Isotopes. Natural and Anthropogenic Sulphur in the Environment. SCOPE 43. John Wiley and Sons.

  • L.P.M. Lamers S.M.E. Van Roozendaal J.G.M. Roelofs (1998) ArticleTitleAcidification of freshwater wetlands: combined effects of non-airborne sulfur pollution and dessication Water Air Soil Pollut. 105 95–106 Occurrence Handle10.1023/A:1005083526455

    Article  Google Scholar 

  • A. Longinelli H. Craig (1967) ArticleTitleOxygen-18 variations in sulfate ions in sea water and saline lakes Science 146 56–59

    Google Scholar 

  • K. Mach K. Zak I. Jackova (1999) ArticleTitleSulfur speciation and isotopic composition in a vertical profile of the main coal seam of the North Bohemian brown coal basin and their paleogeographic interpretation Bull. Czech Geol. Survey 74 51–66

    Google Scholar 

  • K.W. Mandernack L. Lynch H.R. Krouse M.D. Morgan (2000) ArticleTitleSulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry Geochim. Cosmochim. Acta 64 3949–3964 Occurrence Handle10.1016/S0016-7037(00)00491-9

    Article  Google Scholar 

  • B. Mayer K.H. Feger A. Giesemann H.J. Jager (1995a) ArticleTitleInterpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data Biogeochemistry 30 321–358 Occurrence Handle10.1007/BF02181039

    Article  Google Scholar 

  • B. Mayer P. Fritz J. Prietzel H.R. Krouse (1995b) ArticleTitleThe use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils Appl. Geochem. 10 161–173 Occurrence Handle10.1016/0883-2927(94)00054-A

    Article  Google Scholar 

  • Y. Mizutani T.A. Rafter (1969) ArticleTitleBacterial fractionation of oxygen isotopes in the reduction of sulphate and in the oxidation of sulphur N. Z. J. Sci. 12 60–68

    Google Scholar 

  • B. Moldan J. Cerny (1994) Biogeochemistry of Small Catchments. SCOPE 51 John Wiley and Sons Chichester

    Google Scholar 

  • M.D. Morgan (1995) ArticleTitleModeling excess sulfur deposition on wetland soils using stable sulfur isotopes Water Air Soil Pollut. 79 299–308 Occurrence Handle10.1007/BF01100443

    Article  Google Scholar 

  • K.J. Nadelhoffer B. Fry (1988) ArticleTitleControls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter Soil Sci. Soc. Am. J. 52 1633–1640

    Google Scholar 

  • Novak M. and Adamova M. 1998. Introducing 210 Pb dating in the Czech Republic. Use of δ13 C, δ15 N and δ34S ratios in dated biogenic sediments as an interpretive tool in ecology. Final Report, Czech Grant Agency Project No. 205/96/0370, Prague.

  • M. Novak M. Adamova J. Milicic (2003a) ArticleTitleSulfur metabolism in polluted Sphagnum peat bogs: a combined 34S–35S−210 Pb study Water Air Soil Pollut. 3 181–200

    Google Scholar 

  • M. Novak M. Adamova R.K. Wieder S.H. Bottrell (2005) ArticleTitleSulfur mobility in peat Appl. Geochem 20 673–681 Occurrence Handle10.1016/j.apgeochem.2004.11.009

    Article  Google Scholar 

  • M. Novak S.H. Bottrell D. Fottova F. Buzek H. Groscheova K. Zak (1996) ArticleTitleSulfur isotope signals in forest soils of Central Europe along an air pollution gradient Environ. Sci. Technol. 30 3473–3476 Occurrence Handle10.1021/es960106n

    Article  Google Scholar 

  • M. Novak S.H. Bottrell E. Prechova (2001a) ArticleTitleSulfur isotope inventories of atmospheric deposition, spruce forest floor and living Sphagnum along a NW–SE transect across Europe Biogeochemistry 53 23–50

    Google Scholar 

  • M. Novak F. Buzek M. Adamova (1999) ArticleTitleVertical trends in δ13 C, δ15N and δ34S ratios in bulk Sphagnum peat Soil Biol. Biochem. 31 1343–1346

    Google Scholar 

  • M. Novak F. Buzek A.F. Harrison E. Prechova I. Jackova D. Fottova (2003c) ArticleTitleSimilarity between C, N and S stable isotope profiles in European spruce forest soils: implications for the use of δ34S as a tracer Appl. Geochem. 18 765–779 Occurrence Handle10.1016/S0883-2927(02)00162-2

    Article  Google Scholar 

  • M. Novak S. Emmanuel M.A. Vile Y. Erel A. Veron T. Paces R.K. Wieder M. Vanecek M. Stepanova E. Brizova J. Hovorka (2003b) ArticleTitleOrigin of lead in eight Central European peat bogs determined from isotope ratios, strengths and operation times of regional pollution sources Environ. Sci. Technol. 37 437–445 Occurrence Handle10.1021/es0200387

    Article  Google Scholar 

  • M. Novak I. Jackova E. Prechova (2001b) ArticleTitleTemporal trends in the isotope signature of air-borne sulfur in Central Europe Environ. Sci. Technol. 35 255–260 Occurrence Handle10.1021/es0000753

    Article  Google Scholar 

  • M. Novak J.W. Kirchner H. Groscheova M. Havel J. Cerny R. Krejci F. Buzek (2000) ArticleTitleSulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SO x Geochim. Cosmochim. Acta 64 367–383

    Google Scholar 

  • M. Novak R.K. Wieder (1992) ArticleTitleInorganic and organic sulfur profiles in nine Sphagnum peat bogs in the United States and Czechoslovakia Water Air Soil Pollut. 65 353–369

    Google Scholar 

  • M. Novak R.K. Wieder W.R. Schell (1994) ArticleTitleSulfur during early diagenesis in Sphagnum peat: insights from δ34S ratio profiles in 210 Pb-dated peat cores Limnol. Oceanogr. 39 1172–1185 Occurrence Handle10.4319/lo.1994.39.5.1172

    Article  Google Scholar 

  • C. Pierre (1985) ArticleTitleIsotopic evidence for the dynamic redox cycle of dissolved sulphur compounds between free and interstitial solutions in marine salt pans Chem. Geol. 53 191–196 Occurrence Handle10.1016/0009-2541(85)90068-3

    Article  Google Scholar 

  • R. Prikryl J. Svobodova K. Zak D. Hradil (2004) ArticleTitleAnthropogenic origin of salt crusts on sandstone sculptures of Prague’s Charles Bridge (Czech Republic): evidence of mineralogy and stable isotope geochemistry Eur. J. Mineral. 16 609–618 Occurrence Handle10.1127/0935-1221/2004/0016-0609

    Article  Google Scholar 

  • H. Sakai H.R. Krouse (1971) ArticleTitleElimination of memory effect in 18O/16O determination in sulfates Earth Planet. Sci. Lett. 11 369–374 Occurrence Handle10.1016/0012-821X(71)90196-8

    Article  Google Scholar 

  • E.S. Saltzmann G.W. Brass D.A. Price (1983) ArticleTitleThe mechanism of sulfate aerosol formation: chemical and sulfur isotopic evidence Geophys. Res. Lett. 10 513–516

    Google Scholar 

  • Soukupova J., Zak K. and Prikryl R. 2002. Isotopic composition of salt efflorescence from the non-carbonate arenites exposed in castellated rocks of the Bohemian Cretaceous basin, Czech Republic. BIOGEOMON Proceedings, 4th International Symposium on Ecosystem BehaviourUniversity of Reading, UK, August 17–21, 2002, p. 218.

  • P. Steinmann W. Shotyk (1996) ArticleTitleSampling anoxic pore waters in peatlands using peepers for in-situ filtration Fresenius J. Anal. Chem. 354 709–713

    Google Scholar 

  • P. Steinmann W. Shotyk (1997) ArticleTitleChemical composition, pH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs, Jura Mountains, Switzerlands Geochim. Cosmochim. Acta 61 1143–1163 Occurrence Handle10.1016/S0016-7037(96)00401-2

    Article  Google Scholar 

  • Tellam J.H., Lloyd J.W., Bottrell S.H. and Hughes A.J. 1994. Discrimination of groundwater sulphate sources using stable isotopes. Final Report NERC Grant GR3/8134. Natural Environment Research Council, Swindon, UK.

  • A. Trembaczowski (1991) ArticleTitleSulphur and oxygen isotopes behaviour in sulphates of atmospheric groundwater system: observations and model Nordic Hydrol. 22 49–66

    Google Scholar 

  • D.R. Van Stempvoort P. Fritz E.J. Reardon (1992) ArticleTitleSulfate dynamics in upland forest soils, central and southern OntarioCanada: stable isotope evidence Appl. Geochem. 7 159–175

    Google Scholar 

  • Van Stempvoort D.R. and Krouse H.R. 1994. Controls of δ18O in sulfate: a review of experimental data and application to specific environments. In: Alpers C.N. and Blowes P.W. (eds), Environmental Geochemistry of Sulfide Oxidation. Washington Symposia Series 500: 446–480. Am. Chem. Soc., pp. 446–480.

  • D.R. Van Stempvoort J.J. Wills P. Fritz (1991) ArticleTitleAboveground vegetation effects on the deposition and cycling of atmospheric sulfur: chemical and stable isotope evidence Water Air Soil Pollut. 60 55–82

    Google Scholar 

  • Vile M.A. 2001. The role of sulfur in the carbon balance of peatlands. Ph.D. Dissertation, University of Notre Dame, Indiana, USA.

  • M.A. Vile S.D. Bridgham R.K. Wieder M. Novak (2003) ArticleTitleAtmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands Global Biogeochem. Cycles 17 1058 Occurrence Handle10.1029/2002GB001966

    Article  Google Scholar 

  • M.A. Vile R.K. Wieder M. Novak (2000) ArticleTitle200 years of Pb deposition throughout the Czech Republic: patterns and sources Environ. Sci. Technol. 34 12–21 Occurrence Handle10.1021/es990032q

    Article  Google Scholar 

  • R.K. Wieder G.E. Lang (1988) ArticleTitleCycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia Biogeochemistry 5 221–242 Occurrence Handle10.1007/BF02180229

    Article  Google Scholar 

  • R.K. Wieder M. Novak D. Rodrigues (1996) ArticleTitleSample drying, total S and δ34S ratio determination in freshwater peat Soil Sci. Soc. Am. J. 60 949–952 Occurrence Handle10.2136/sssaj1996.03615995006000030038x

    Article  Google Scholar 

  • R.K. Wieder J.B. Yavitt G.E. Lang (1990) ArticleTitleMethane production and sulfate reduction in two Appalachian peatlands Biogeochemistry 10 81–104 Occurrence Handle10.1007/BF00002225

    Article  Google Scholar 

  • T. Whilde (1994) The Natural History of Connemara IMMEL Publishing UK

    Google Scholar 

  • F. Yanagisawa H. Sakai (1983) ArticleTitlePrecipitation of SO2 for sulphur isotope ratio measurements by the thermal decomposition of BaSO4–V2O5–SiO2 mixtures Anal. Chem. 55 985–987 Occurrence Handle10.1021/ac00257a046

    Article  Google Scholar 

  • F.J. Zhao J.S. Knights Z.Y. Hu S.P. McGrath (2003) ArticleTitleStable sulfur isotope ratio indicates long-term changes in sulfur deposition in the Broadbalk Experiment since 1845 J. Environ. Qual. 32 33–39 Occurrence Handle10.2134/jeq2003.0033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Novák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novák, M., Vile, M.A., Bottrell, S.H. et al. Isotope Systematics of Sulfate-oxygen and Sulfate-sulfur in Six European Peatlands. Biogeochemistry 76, 187–213 (2005). https://doi.org/10.1007/s10533-005-4433-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-4433-7

Keywords

Navigation