Skip to main content

Advertisement

Log in

Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Variation in dissolved organic carbon (DOC) concentrations of surface waters is a consequence of process changes in the surrounding terrestrial environment, both within annual cycles and over the longer term. Long-term records (1987–2006) of DOC concentrations at six catchments (0.44–10.0 km2) across a climatic transect in Scotland were investigated for intra-annual relationships to evaluate potential long-term seasonal patterns. The intra-annual mode of DOC export contrasted markedly between catchments and appeared dependent on their hydrological characteristics. Catchments in wetter Central Scotland with high rainfall–runoff ratios, short transit times and well-connected responsive soils show a distinct annual periodicity in DOC concentrations throughout the long-term datasets. Increased DOC concentrations occurred between June and November with correspondingly lower DOC concentrations from December to May. This appears unrelated to discharge, and is dependent mainly on higher temperatures driving biological activity, increasing decomposition of available organic matter and solubility of DOC. The drier eastern catchments have lower rainfall–runoff ratios, longer transit times and annual drying–wetting regimes linked to changing connectivity of soils. These are characterised by seasonal DOC concentration–discharge relationships with an autumnal flush of DOC. Temperature influences the availability of organic matter for DOC transport producing a high DOC concentration–discharge relationship in summer/autumn and low DOC concentration–discharge relationship in winter/spring. These two distinct modes of seasonal DOC transport have important implications for understanding changes in DOC concentrations and export brought about by climate change (temperature and precipitation) and modelling of aquatic carbon losses from soil-types under different hydrological regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ågren A, Jansson M, Ivarsson H, Bishop K, Seibert J (2008) Seasonal and runoff-related changes in total organic carbon concentrations in the River Öre, Northern Sweden. Aquat Sci 70:21–29. doi:10.1007/s00027-007-0943-9

    Article  Google Scholar 

  • Aitkenhead JA, Hope D, Billett MF (1999) The relationship between dissolved organic carbon in streamwater and soil organic carbon pools at different spatial scales. Hydrol Process 13:1289–1302. doi :10.1002/(SICI)1099-1085(19990615)13:8<1289::AID-HYP766>3.0.CO;2-M

    Article  Google Scholar 

  • Arnell NW (1998) Climate change and water resources in Britain. Clim Change 39:83–110. doi:10.1023/A:1005339412565

    Article  Google Scholar 

  • Bain DC, Midwood AJ, Miller JD (1997) Strontium isotope ratios in streams and the effect of flow rate in relation to weathering in catchments. Catena 32:143–151. doi:10.1016/S0341-8162(97)00055-6

    Article  Google Scholar 

  • Billett MF, Deacon CM, Palmer SM, Dawson JJC, Hope D (2006) Connecting organic carbon in streamwater and soils in a peatland catchment. J Geophys Res Biosci 111:G02010. doi:10.1029/2005JG000065

    Article  Google Scholar 

  • Bonnett SAF, Ostle N, Freeman C (2006) Seasonal variations in decomposition processes in a valley-bottom riparian peatland. Sci Total Environ 370:561–573. doi:10.1016/j.scitotenv.2006.08.032

    Article  Google Scholar 

  • Brooks PD, McKnight DM, Bencala KE (1999) The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments. Water Resour Res 35:1895–1902. doi:10.1029/1998WR900125

    Article  Google Scholar 

  • Castelle AJ, Galloway JN (1990) Carbon dioxide dynamics in acid forest soils in Shenandoah National Park, Virginia. Soil Sci Soc Am J 54:252–257

    Google Scholar 

  • Clark MJ, Cresser MS, Smart R, Chapman PJ, Edwards AC (2004) The influence of catchment characteristics on the seasonality of carbon and nitrogen species concentrations in upland rivers of Northern Scotland. Biogeochemistry 68:1–19. doi:10.1023/B:BIOG.0000025733.07568.11

    Article  Google Scholar 

  • Clark JM, Lane SN, Chapman PJ, Adamson JK (2007) Export of dissolved organic carbon from an upland peatland during storm events: implications for flux estimates. J Hydrol 347:438–447. doi:10.1016/j.jhydrol.2007.09.030

    Article  Google Scholar 

  • Cooper R, Thoss V, Watson H (2007) Factors influencing the release of dissolved organic carbon and dissolved forms of nitrogen from a small upland headwater during autumn runoff events. Hydrol Process 21:622–633. doi:10.1002/hyp.6261

    Article  Google Scholar 

  • Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190. doi:10.1016/j.scitotenv.2007.03.023

    Article  Google Scholar 

  • Dawson JJC, Bakewell C, Billett MF (2001a) Is in-stream processing an important control on spatial changes in headwater carbon fluxes? Sci Total Environ 265:153–167. doi:10.1016/S0048-9697(00)00656-2

    Article  Google Scholar 

  • Dawson JJC, Billett MF, Hope D (2001b) Diurnal variations in the carbon chemistry of two acidic upland streams in northeast Scotland. Freshw Biol 46:1309–1322. doi:10.1046/j.1365-2427.2001.00751.x

    Article  Google Scholar 

  • Dawson JJC, Billett MF, Neal C, Hill S (2002) A comparison of particulate, dissolved and gaseous carbon in two contrasting upland streams in the UK. J Hydrol 257:226–246. doi:10.1016/S0022-1694(01)00545-5

    Article  Google Scholar 

  • Dawson JJC, Billett MF, Hope D, Palmer SM, Deacon CM (2004) Sources and sinks of aquatic carbon in an upland, peatland continuum. Biogeochemistry 70:71–92. doi:10.1023/B:BIOG.0000049337.66150.f1

    Article  Google Scholar 

  • de Wit HA, Wright RF (2008) Projected stream water fluxes of NO3 and total organic carbon from the Storgama headwater catchment, Norway, under climate change and reduced acid deposition. Ambio 37:56–63. doi:10.1579/0044-7447(2008)37[56:PSWFON]2.0.CO;2

    Article  Google Scholar 

  • Dixon E, Gardner M (1998) Analytical quality control for the UK Acid Waters Monitoring Network. Sci Total Environ 216:113–119. doi:10.1016/S0048-9697(98)00147-8

    Article  Google Scholar 

  • Dunn SM, Vinogradoff SI, Thornton GJP, Bacon JR, Graham MC, Farmer JG (2006) Quantifying hydrological budgets and pathways in a small upland catchment using a combined modeling and tracer approach. Hydrol Process 20:3049–3068. doi:10.1002/hyp.6157

    Article  Google Scholar 

  • Eimers MC, Watmough SA, Buttle JM (2008a) Long-term trends in dissolved organic carbon concentration: a cautionary note. Biogeochemistry 87:71–81. doi:10.1007/s10533-007-9168-1

    Article  Google Scholar 

  • Eimers MC, Buttle J, Watmough SA (2008b) Influence of seasonal changes in runoff and extreme events on DOC trends in wetland and upland-draining streams. Can J Fish Aquat Sci 65:796–808

    Google Scholar 

  • Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71. doi:10.1016/j.envpol.2004.12.031

    Article  Google Scholar 

  • Evans CD, Chapman PJ, Clark JM, Monteith DT, Cresser MS (2006) Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Change Biol 12:2044–2053. doi:10.1111/j.1365-2486.2006.01241.x

    Article  Google Scholar 

  • Freeman C, Evans CD, Montieth DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785–786. doi:10.1038/35090628

    Article  Google Scholar 

  • Gardner M (2008) Long-term proficiency testing for the UK Acid Waters Monitoring Network. Accredit Qual Assur 13:255–260. doi:10.1007/s00769-008-0367-9

    Article  Google Scholar 

  • Grieve IC (1990) Seasonal, hydrological and land management factors controlling dissolved organic carbon concentrations in the Loch Fleet catchments, southwest Scotland. Hydrol Process 4:231–239. doi:10.1002/hyp.3360040304

    Article  Google Scholar 

  • Grieve IC (1994) Dissolved organic carbon dynamics in 2 streams draining forested catchments at Loch Ard, Scotland. Hydrol Process 8:457–464. doi:10.1002/hyp.3360080508

    Article  Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:135–150. doi:10.1023/A:1013039830323

    Article  Google Scholar 

  • Hagedorn F, Schleppi P, Waldner P, Fluhler H (2000) Export of dissolved organic carbon and nitrogen from Gleysol dominated catchments—the significance of water flow paths. Biogeochemistry 50:137–161. doi:10.1023/A:1006398105953

    Article  Google Scholar 

  • Harriman R, Morrison BRS (1982) Ecology of streams draining forested and non-forested catchments in an area of central Scotland subject to acid precipitation. Hydrobiology 88:251–263. doi:10.1007/BF00008505

    Article  Google Scholar 

  • Harriman R, Gillespie E, King D, Watt AW, Christie AEG, Cowan AA et al (1990) Short-term ionic responses as indicators of hydrochemical processes in the Allt a’Mharcaidh catchment, western Cairngorms, Scotland. J Hydrol 116:267–285. doi:10.1016/0022-1694(90)90127-J

    Article  Google Scholar 

  • Harriman R, Watt AW, Christie AEG, Collen P, Moore DW, McCartney AG et al (2001) Interpretation of trends in acidic deposition and surface water chemistry in Scotland during the past three decades. Hydrol Earth Syst Sci 5:407–420

    Google Scholar 

  • Harriman R, Watt AW, Christie AEG, Moore DW, McCartney AG, Taylor EM (2003) Quantifying the effects of forestry practices on the recovery of upland streams and lochs from acidification. Sci Total Environ 310:101–111. doi:10.1016/S0048-9697(02)00626-5

    Article  Google Scholar 

  • Hinton MJ, Schiff SL, English MC (1998) Sources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian Shield. Biogeochemistry 41:175–197. doi:10.1023/A:1005903428956

    Article  Google Scholar 

  • Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84:301–324. doi:10.1016/0269-7491(94)90142-2

    Article  Google Scholar 

  • Hope D, Billett MF, Cresser MS (1997) Exports of organic carbon in two river systems in NE Scotland. J Hydrol 193:61–82. doi:10.1016/S0022-1694(96)03150-2

    Article  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2004) Variations in dissolved CO2 and CH4 in a headwater catchment: an investigation of soil-stream linkages. Hydrol Process 18:3255–3275. doi:10.1002/hyp.5657

    Article  Google Scholar 

  • Hrachowitz M, Soulsby C, Tetzlaff D, Dawson JJC, Dunn SM, Malcolm IA (in review) Using longer-term data sets to understand transit times in contrasting headwater catchments. J Hydrol

  • Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG et al (2002) Climate change scenarios for the United Kingdom: the UKCIP02 scientific report. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich

    Google Scholar 

  • Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403:524–527. doi:10.1038/35000537

    Article  Google Scholar 

  • Lumsdon DG, Stutter MI, Cooper RJ, Manson JR (2005) Model assessment of biogeochemical controls on dissolved organic carbon partitioning in an acid organic soil. Environ Sci Technol 39:8057–8063. doi:10.1021/es050266b

    Article  Google Scholar 

  • McDowell WH (1985) Kinetics and mechanisms of dissolved organic carbon retention in a headwater stream. Biogeochemistry 1:329–352. doi:10.1007/BF02187376

    Article  Google Scholar 

  • McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330:543–563. doi:10.1016/j.jhydrol.2006.04.020

    Article  Google Scholar 

  • Miller JD, Adamson JK, Hirst D (2001) Trends in stream water quality in environmental change network upland catchments: the first 5 years. Sci Total Environ 265:7–38. doi:10.1016/S0048-9697(00)00645-8

    Article  Google Scholar 

  • Milne R, Brown TA (1997) Carbon in the vegetation and soils of Great Britain. J Environ Manage 49:413–433. doi:10.1006/jema.1995.0118

    Article  Google Scholar 

  • Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW et al (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714. doi:10.1038/nature04555

    Article  Google Scholar 

  • Monteith DT, Evans CD, Patrick S (2001) Monitoring acid waters in the UK: 1988–1998 trends. Water Air Soil Pollut 130:1307–1312. doi:10.1023/A:1013901822306

    Article  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T et al (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540. doi:10.1038/nature06316

    Article  Google Scholar 

  • Neal C, Reynolds B, Wilkinson J, Hill T, Neal M, Hill S et al (1998) The impacts of conifer harvesting on runoff water quality: a regional survey of Wales. Hydrol Earth Syst Sci 2:323–344

    Article  Google Scholar 

  • Roulet N, Moore TR (2006) Browning the waters. Nature 444:283–284. doi:10.1038/444283a

    Article  Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234. doi:10.1038/348232a0

    Article  Google Scholar 

  • Scott MJ, Jones MN, Woof C, Tipping E (1998) Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peatland system. Environ Int 24:537–546. doi:10.1016/S0160-4120(98)00043-9

    Article  Google Scholar 

  • Sharp EL, Parsons SA, Jefferson B (2006) Seasonal variations in natural organic matter and its impact on coagulation in water treatment. Sci Total Environ 363:183–194. doi:10.1016/j.scitotenv.2005.05.032

    Article  Google Scholar 

  • Soulsby C (1995) Contrasts in storm event hydrochemistry in an acidic afforested catchment in upland Wales. J Hydrol 170:159–179. doi:10.1016/0022-1694(94)02677-4

    Article  Google Scholar 

  • Soulsby C, Helliwell RC, Ferrier RC, Jenkins A, Harriman R (1997) Seasonal snowpack influence on the hydrology of a sub-arctic catchment in Scotland. J Hydrol 192:17–32. doi:10.1016/S0022-1694(96)03123-X

    Article  Google Scholar 

  • Soulsby C, Malcolm R, Helliwell RC, Ferrier RC, Jenkins A (2000) Isotope hydrology of the Allt a’Mharcaidh catchment, Cairngorm Mountains, Scotland: implications for hydrological pathways and water residence times. Hydrol Process 14:747–762. doi :10.1002/(SICI)1099-1085(200003)14:4<747::AID-HYP970>3.0.CO;2-0

    Article  Google Scholar 

  • Soulsby C, Tetzlaff D, Rodgers P, Dunn SM, Waldron S (2006) Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: an initial evaluation. J Hydrol 325:197–221. doi:10.1016/j.jhydrol.2005.10.024

    Article  Google Scholar 

  • Stott T, Mount N (2004) Plantation forestry impacts on sediment yields and downstream channel dynamics in the UK: a review. Prog Phys Geogr 28:197–240. doi:10.1191/0309133304pp410ra

    Article  Google Scholar 

  • Tetzlaff D, Soulsby C, Waldron S, Malcolm IA, Bacon PJ, Dunn SM, Lilly A, Youngson AF (2007a) Conceptualization of runoff processes using a geographical information system and tracers in a nested mesoscale catchment. Hydrol Process 21:1289–1307

    Article  Google Scholar 

  • Tetzlaff D, Malcolm IA, Soulsby C (2007b) Influence of forestry, environmental change and climatic variability on the hydrology, hydrochemistry and residence times of upland catchments. J Hydrol 346:93–111. doi:10.1016/j.jhydrol.2007.08.016

    Article  Google Scholar 

  • Tipping E, Hilton J, James B (1988) Dissolved organic matter in Cumbrian lakes and streams. Freshw Biol 19:371–378. doi:10.1111/j.1365-2427.1988.tb00358.x

    Article  Google Scholar 

  • Tipping E, Smith EJ, Bryant CL, Adamson JK (2007) The organic carbon dynamics of a moorland catchment in NW England. Biogeochemistry 84:171–189. doi:10.1007/s10533-007-9117-z

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Walling DE (1977) Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resour Res 13:531–538. doi:10.1029/WR013i003p00531

    Article  Google Scholar 

  • Worrall F, Burt TP (2007) Trends in DOC concentration in Great Britain. J Hydrol 346:81–92. doi:10.1016/j.jhydrol.2007.08.021

    Article  Google Scholar 

  • Worrall F, Harriman R, Evans CD, Watts CD, Adamson J, Neal C et al (2004) Trends in dissolved organic carbon in UK rivers and lakes. Biogeochemistry 70:369–402. doi:10.1007/s10533-004-8131-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Leverhulme Trust for funding the work. Thanks also to David Moore (Allt a’Mharcaidh and Loch Ard) and Helen Watson (Sourhope) for searching out relevant databases. We would like to acknowledge the support of the Department for Environment Food and Rural Affairs (DEFRA) and University College London (UCL) in funding and supporting water quality analysis at Allt a’Mharcaidh and the Scottish Government for funding data collection and water quality analysis at Loch Ard. We would also like to thank Mike Hutchins (UKAWMN) and the ECN (http://www.ecn.ac.uk/) for discharge, precipitation and temperature data at the Allt a’Mharcaidh; Derek Fraser at the Scottish Environmental Protection Agency for discharge data at Loch Ard. Finally, the British Atmospheric Data Centre (http://www.badc.nerc.ac.uk/home) for precipitation data from sites surrounding Loch Ard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. C. Dawson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, J.J.C., Soulsby, C., Tetzlaff, D. et al. Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments. Biogeochemistry 90, 93–113 (2008). https://doi.org/10.1007/s10533-008-9234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9234-3

Keywords

Navigation