Skip to main content

Advertisement

Log in

Impacts of forest biomass removal on soil nutrient status under climate change: a catchment-based modelling study for Finland

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The environmental impact of different forest harvesting scenarios on soil nutrient status and water chemistry under current and future (IPCC A2) climate was evaluated for a random sample of lake catchments (n = 1066) covering Finland. Biomass removal scenarios were derived from a management-oriented large-scale forest model based on data from national forest inventories. Forest ecosystem sustainability was assessed by evaluating soil base cation balances as well as temporal changes (2010–2050) in soil base saturation and lake water acid neutralising capacity, using a dynamic hydro-geochemical model. The harvesting scenarios had very different effects on biomass and element removal as well as soil and water quality; only harvesting of above-ground woody biomass (stem-only or stem-and-branches harvesting scenarios) was predicted to be sustainable, i.e. not depleting the soil base cation pools in the long term. The most intensive scenario—whole-tree harvesting (including the removal of stumps and roots)—doubled the removal of biomass, tripled the removal of base cations from the catchment soils, and increased nitrogen removal fourfold. Climate change was predicted to have a positive impact by increasing the future supply of base cations from weathering, thus compensating their removal by biomass harvesting. However, additional inputs of nitrogen and potassium will be required to ensure sustained forest growth under intensive biomass harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aherne J, Posch M, Forsius M, Vuorenmaa J, Tamminen P, Holmberg M, Johansson M (2008) Modelling the hydro-geochemistry of acid-sensitive catchments in Finland under atmospheric deposition and biomass harvesting scenarios. Biogeochemistry 88(3):233–256

    Article  Google Scholar 

  • Äijälä O, Kuusinen M, Koistinen A (eds) (2010) Good forestry practices for harvesting and growing energy wood [in Finnish]. Tapio, Helsinki, p. 31 www.tapi.fi

  • Akselsson C, Westling O, Sverdrup H, Holmqvist J, Thelin G, Uggla E, Malm G (2007) Impact of harvest intensity on long-term base cation budgets in Swedish forest soils. Water Air Soil Pollut Focus 7:201–210

    Article  Google Scholar 

  • Akselsson C, Westling O, Alveteg M, Thelin G, Fransson A-M, Hellsten S (2008) The influence of N load and harvest intensity on the risk of P limitation in Swedish forest soils. Sci Total Environ 404(2–3):284–289

    Google Scholar 

  • Bonan GB, Van Cleve K (1992) Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests. Can J For Res 22:629–639

    Article  Google Scholar 

  • Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Rik Brydson R, Benning LG (2009) Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37(7):615–618

    Article  Google Scholar 

  • Brady PV (1991) The effect of silicate weathering on global temperature and atmospheric CO2. J Geophys Res 96(B11):18101–18106

    Article  Google Scholar 

  • Bringmark L (1977) A bioelement budget of an old Scots pine forest in central Sweden. Silva Fenn 11:201–209

    Google Scholar 

  • Climate and Energy Strategy (2008) Long-term climate and energy strategy. Government Report to Parliament 6 Nov 2008, Ministry of Employment and the Economy, Helsinki, p. 130 (In Finnish with English summary). URL: www.tem.fi/?l=en&s=2658

  • Cosby BJ, Hornberger GM, Galloway JN, Wright RF (1985) Modeling the effects of acid deposition: assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resour Res 21:51–63

    Article  Google Scholar 

  • Cosby BJ, Ferrier RC, Jenkins A, Wright RF (2001) Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrol Earth Syst Sci 5:499–517

    Article  Google Scholar 

  • DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Article  Google Scholar 

  • Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. OJ L 140 of 5.6.2009, p. 16

  • Finér L (1989) Biomass and nutrient cycle in fertilized and unfertilized pine, mixed birch and pine and spruce stands on a drained mire. Acta For Fenn 208:63

    Google Scholar 

  • Finér L, Brække FH (1991) Understorey vegetation on three ombrotrophic pine bogs and the effects of NPK and PK fertilization. Scand J For Res 6(1):113–128

    Article  Google Scholar 

  • Foresight Report (2009) Towards a Low-emission Society in Finland [in Finnish]. Foresight report on climate and energy policy of the government, Valtioneuvoston kanslian julkaisusarja 28/2009, Helsinki, p. 180

  • Forsius M, Malin V, Mäkinen I, Mannio J, Kämäri J, Kortelainen P, Verta M (1990) Finnish lake acidification survey: survey design and random selection of lakes. Environmetrics 1(1):73–88

    Article  Google Scholar 

  • Forsius M, Johansson M, Posch M, Holmberg M, Kämäri J, Lepistö A, Roos J, Syri S, Starr M (1997) Modelling the effects of climate change, acidic deposition and forest harvesting on the biogeochemistry of a boreal forested catchment in Finland. Boreal Environ Res 2:129–143

    Google Scholar 

  • Forsius M, Vuorenmaa J, Mannio J, Syri S (2003) Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy. Sci Total Environ 310:121–132

    Article  Google Scholar 

  • Henriksen A, Posch M (2001) Steady-state models for calculating critical loads of acidity for surface waters. Water Air Soil Pollut Focus 1:375–398

    Article  Google Scholar 

  • Hettelingh J-P, Posch M, Slootweg J, Reinds GJ, Spranger T, Tarrason L (2007) Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water Air Soil Pollut Focus 7:379–384

    Article  Google Scholar 

  • Huber C, Aherne J, Weis W, Farrell EP, Göttlein A, Cummins T (2010) Ion concentrations and fluxes of seepage water before and after clear cutting of Norway spruce stands at Ballyhooly, Ireland, and Höglwald, Germany. Biogeochemistry 101:7–26

    Article  Google Scholar 

  • Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, Van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  Google Scholar 

  • Hyvönen R, Persson T, Andersson S, Olsson B, Ågren GI, Linder S (2008) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89:121–137

    Article  Google Scholar 

  • Jacobson S, Kukkola M, Mälkönen E, Tveite B, Möller G (1996) Growth response of coniferous stands to whole-tree harvesting in early thinnings. Scand J For Res 11:50–59

    Article  Google Scholar 

  • Jacobson S, Kukkola M, Mälkönen E, Tveite B (2000) Impact of whole-tree harvesting and compensatory fertilization on growth of coniferous thinning stands. For Ecol Manag 129:41–51

    Article  Google Scholar 

  • Järvinen O, Vänni T (1990) Bulk deposition chemistry in Finland. In: Kauppi P, Anttila P, Kenttämies K (eds) Acidification in Finland. Springer, Berlin, Heidelberg, pp 151–165

    Chapter  Google Scholar 

  • Joki-Heiskala P, Johansson M, Holmberg M, Mattsson T, Forsius M, Kortelainen P, Hallin L (2003) Long-term base cation balances of forest mineral soils in Finland. Water Air Soil Pollut 150:255–273

    Article  Google Scholar 

  • Jongmans AG, Van Breemen N, Lundström U, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    Article  Google Scholar 

  • Kämäri J, Forsius M, Kortelainen P, Mannio J, Verta M (1991) Finnish lake survey: present status of acidification. Ambio 20(1):23–27

    Google Scholar 

  • Kärkkäinen L, Matala J, Härkönen K, Kellomäki S, Nuutinen T (2008) Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy 32:934–943

    Article  Google Scholar 

  • Kauppi P, Anttila P, Kenttämies K (eds) (1990) Acidification in Finland. Springer, Berlin and Heidelberg, p 1237

    Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  Google Scholar 

  • Kortelainen P (1993) Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can J Fish Aquat Sci 50(7):1477–1483

    Article  Google Scholar 

  • Kortelainen P, Mannio J, Forsius M, Kämäri J, Verta M (1989) Finnish lake survey: the role of organic and anthropogenic acidity. Water Air Soil Pollut 46:235–249

    Google Scholar 

  • Kump LR, Brantley SL, Arthur MA (2000) Chemical weathering, atmospheric CO2 and climate. Annu Rev Earth Planet Sci 28:611–667

    Article  Google Scholar 

  • Luiro J, Kukkola M, Saarsalmi A, Tamminen P, Helmisaari H-S (2010) Logging residue removal after thinning in boreal forests: long-term impact on the nutrient status of Norway spruce and Scots pine needles. Tree Physiol 30:78–88

    Article  Google Scholar 

  • Mälkönen E (1977) Annual primary production and nutrient cycle in birch stands. Comm Inst For Fenn 91(5):1–35

    Google Scholar 

  • Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden [in Swedish with English summary]. Report 45, Department of Forest Survey, Swedish University of Agricultural Sciences, Uppsala, p. 73

  • METLA (2009) Finnish statistical yearbook of forestry 2009 [in Finnish with English annotations]. Finnish Forest Research Institute, Helsinki, p 452

    Google Scholar 

  • Moldan F, Cosby BJ, Wright RF (2009) Modelling the role of nitrogen in acidification of Swedish lakes: future scenarios of acid deposition, climate change and forestry practices. Report B1888, Swedish Environmental Research Institute (IVL), Göteborg, Sweden, p. 49

  • ICP Integrated Monitoring (2004) ICP IM Manual: Procedure for calculating biomass and bioelements. Finnish Environment Institute, Helsinki. URL: www.ymparisto.fi/default.asp?contentid=96947&lan=EN

  • Nadelhoffer KJ, Colman BP, Currie WS, Magill AH, Aber JD (2004) Decadal-scale fates of 15 N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA). For Ecol Manag 196(1):89–107

    Article  Google Scholar 

  • Nakićenović N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Van Rooijen S, Victor N, Dadi Z (2000) Emissions Scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, UK, p 599

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Olsson M, Rosén K, Melkerud P-A (1993) Regional modelling of base cation losses from Swedish forest soils due to whole-tree harvesting. Appl Geochem 2:189–194

    Article  Google Scholar 

  • Park J-H, Duan L, Kim B, Mitchell MJ, Shibata H (2010) Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environ Int 36:212–225

    Article  Google Scholar 

  • Posch M, Kämäri J, Forsius M, Henriksen A, Wilander A (1997) Exceedance of critical loads for lakes in Finland, Norway and Sweden: reduction requirements for acidifying nitrogen and sulfur deposition. Environ Manag 21(2):291–304

    Article  Google Scholar 

  • Posch M, Aherne J, Forsius M, Fronzek S, Veijalainen N (2008) Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland. Hydrol Earth Syst Sci 12:449–463

    Article  Google Scholar 

  • Powers RF, Scott DA, Sanchez FG, Voldseth RA, Page-Dumroese D, Elioff JD, Stone DM (2005) The North American long-term soil productivity experiment: findings from the first decade of research. For Ecol Manag 220:31–50

    Article  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci 104(24):10288–10293

    Article  Google Scholar 

  • Redsven V, Anola-Pukkila A, Haara A, Hirvelä H, Härkönen K, Kettunen L et al (2004) MELA2002 Reference manual, 2nd edn. Finnish Forest Research Institute, Helsinki

    Google Scholar 

  • Reinds GJ, Posch M, Leemans R (2009) Modelling recovery from soil acidification in European forests under climate change. Sci Total Environ 407:5663–5673

    Article  Google Scholar 

  • Repo A, Tuomi M, Liski J (2010) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy. doi:10.1111/j.1757-1707.2010.01065.x

  • Schöpp W, Posch M, Mylona S, Johansson M (2003) Trends in acid deposition (1880–2030) for sensitive freshwater regions in Europe. Hydrol Earth Syst Sci 7:436–446

    Article  Google Scholar 

  • Sievänen R, Kareinen T, Hirvelä H, Ilvesniemi H (2007) Greenhouse gas budgets based on forest harvesting scenarios [in Finnish]. Metsätieteen aikakauskirja 4(2007):329–339

    Google Scholar 

  • Simpson D, Fagerli H, Jonson JE, Tsyro S, Wind P, Tuovinen J-P (2003) Transboundary acidification, eutrophication and ground level ozone in Europe: Unified EMEP model description. EMEP Status Report 1/2003 Part I, Norwegian Meteorological Institute, Oslo, Norway.URL: www.emep.int/mscw/index_mscw.html

  • Sverdrup HU (1990) The kinetics of base cation release due to chemical weathering. Lund University Press, Lund, p 246

    Google Scholar 

  • Sverdrup HU (2009) Chemical weathering of soil minerals and the role of biological processes. Fungal Biol Rev 23:94–100

    Article  Google Scholar 

  • Sverdrup H, Warfvinge P (1993) Calculating field weathering rates using a mechanistic geochemical model PROFILE. Appl Geochem 8:273–283

    Article  Google Scholar 

  • Tamm CO, Aronsson A, Popovic B, Flower-Ellis J (1999) Optimum nutrition and nitrogen saturation in Scots pine stands. Studia Forestalia Suecica 206:7–126

    Google Scholar 

  • Tamminen P, Starr MR (1990) A survey of forest soil properties related to soil acidification in southern Finland. In: Kauppi P, Anttila P, Kenttämies K (eds) Acidification in Finland. Springer, Berlin, Heidelberg, pp 231–247

    Google Scholar 

  • Thiffault E, Pare D, Belanger N, Munson A, Marquis F (2006) Harvesting intensity at clear-felling in the boreal forest: Impact on soil and foliar nutrient status. Soil Sci Soc Am J 70:691–701

    Article  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels–the food, energy, and environment trilemma. Nature 325:270–271

    Google Scholar 

  • UBA (2004) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. UNECE convention on long-range transboundary air pollution. Federal Environmental Agency, Berlin

    Google Scholar 

  • Vehviläinen B (2007) Hydrological forecasting and real-time monitoring: the watershed simulation and forecasting system (WSFS). In: Heinonen P, Ziglio G, Van der Beken A (eds) Hydrological and limnological aspects of lake monitoring. Water quality measurements series. Wiley, Chichester, pp 13–20

    Google Scholar 

  • Velbel MA (1993) Temperature dependence of silicate weathering in nature: How strong a negative feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming? Geology 21:1059–1062

    Article  Google Scholar 

  • Veroustraete F, Sabbe H, Eerens H (2002) Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens Environ 83:376–399

    Article  Google Scholar 

  • Vuorenmaa J (2004) Long-term changes of acidifying deposition in Finland (1973–2000). Environ Pollut 128:351–362

    Article  Google Scholar 

  • Vuorenmaa J, Forsius M (2008) Recovery of acidified Finnish lakes: trends, patterns and dependence of catchment characteristics. Hydrol Earth Syst Sci 12:465–478

    Article  Google Scholar 

  • Walmsley JD, Godbold DL (2009) Stump harvesting for bioenergy: a review of the environmental impacts. Forestry 83(1):17–38

    Article  Google Scholar 

  • White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59(9):1729–1747

    Article  Google Scholar 

  • Wright RF (1998) Effect of increased CO2 and temperature on runoff chemistry at a forested catchment in southern Norway (CLIMEX project). Ecosystems 1:216–225

    Article  Google Scholar 

  • Wright RF, Aherne J, Bishop K, Camarero L, Cosby BJ, Erlandsson M, Evans CD, Forsius M, Hardekopf DW, Helliwell R, Hruska J, Jenkins A, Kopácek J, Moldan F, Posch M, Rogora M (2006) Modelling the effect of climate change on recovery of acidified freshwaters: relative sensitivity of individual processes in the MAGIC model. Sci Total Environ 365:154–166

    Article  Google Scholar 

Download references

Acknowledgments

This research was undertaken, in part, thanks to funding from the Canada Research Chairs Program and an NSERC Discovery grant. The preparation of this paper has been partially supported by the European Commission’s LIFE III programme within the framework of the European Consortium for Modelling Air Pollution and Climate Strategies (EC4MACS; www.ec4macs.eu) and the LIFE + VACCIA project (www.environment.fi/syke/vaccia). S. Fronzek and N. Veijalainen (Finnish Environment Institute) are acknowledged for providing meteorological data and discharge estimates, and P. Tamminen (Finnish Forest Research Institute) and M. Starr (University of Helsinki) for providing mineral soil data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Posch.

Appendices

Appendix A: Forest growth under climate change

Forest growth under climate change is obtained from the reference growth G 0 as:

$$ G = G_{0} \cdot f_{temp} \cdot f_{resp} $$
(1)

i.e. the modified growth G is obtained by multiplying the (measured) reference growth with a temperature factor f temp and a respiration factor f resp. Both the temperature and the respiration factor are taken from the C-Fix model (Veroustraete et al. 2002). The temperature effect on growth is modelled according to:

$$ f_{temp} = {\frac{g(T)}{{g(T_{0} )}}}\quad {\text{with}}\quad g(T) = {\frac{{\exp \left( {C_{1} - {\tfrac{{\Updelta H_{a} }}{RT}}} \right)}}{{1 + \exp \left( {{\tfrac{{\Updelta ST - \Updelta H_{d} }}{RT}}} \right)}}} $$
(2)

where ΔH a is the activation energy (52 750 J mol−1), ΔH d the deactivation energy (211 000 J mol−1), ΔS the entropy of the denaturation equilibrium of CO2 (704.98 J K−1mol−1), C 1 = 21.77, and R = 8.314 J K−1mol−1 the universal gas constant. T is the temperature and T 0 the reference temperature at which G 0 is measured (both in K). The respiration factor is modelled as the ratio of autotrophic respiration at different temperatures:

$$ f_{resp} = {\frac{{1 - A_{d} (\theta )}}{{1 - A_{d} (\theta_{0} )}}}\quad {\text{with}}\quad A_{d} (\theta ) = \left( {7.825 - 1.145 \cdot \theta } \right)/100 $$
(3)

where θ and θ 0 are the temperatures in degrees Celsius (θ = T–273.15).

Appendix B: Base cation weathering under climate change

The temperature-dependence of base cation (Ca2+ + Mg2+ + K+) weathering rates is modelled as:

$$ Bc_{w} (T) = Bc_{w} (T_{0} ) \cdot A(T_{0} ,T) $$
(4)

Since the function A describes the temperature-dependence of the underlying chemical reactions, it is assumed to have the form of an Arrhenius-factor (T and T 0 in Kelvin):

$$ A(T_{0} ,T) = \exp \,\left( {{\frac{\Updelta H}{R}}\left( {{\frac{1}{{T_{0} }}} - \frac{1}{T}} \right)} \right) $$
(5)

For the activation energy divided by R we used ΔH/R = 3600 K. This is an average of values for different mineral groups given in Sverdrup and Warfvinge (1993), which is also used as a default value in European critical load calculations (UBA 2004). For T 0 = 274.2 K (the median temperature at the 1066 catchments; see Table 1) and T = T 0 + 3.8 (typical increase in Finland by 2050 under A2 climate change scenario; see Fig. 1) one obtains A = 1.197, i.e. an increase in weathering by about 20%. The sensitivity to the value of ΔH/R is small: for ΔH/R = 3200 and ΔH/R = 4000 (a more than 10% variation around 3600) one obtains A = 1.173 and 1.221, respectively, i.e. less than 3% change.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aherne, J., Posch, M., Forsius, M. et al. Impacts of forest biomass removal on soil nutrient status under climate change: a catchment-based modelling study for Finland. Biogeochemistry 107, 471–488 (2012). https://doi.org/10.1007/s10533-010-9569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9569-4

Keywords

Navigation