Skip to main content

Advertisement

Log in

The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Deforestation changes the hydrological, geomorphological, and biochemical states of streams by decreasing evapotranspiration on the land surface and increasing runoff, river discharge, erosion and sediment fluxes from the land surface. Deforestation has removed about 55% of the native vegetation and significantly altered the hydrological and morphological characteristics of an 82,632 km2 watershed of the Araguaia River in east-central Brazil. Observed discharge increased by 25% from the 1970s to the 1990s and computer simulations suggest that about 2/3 of the increase is from deforestation, the remaining 1/3 from climate variability. Changes of this scale are likely occurring throughout the 2,000,000 km2 savannah region of central Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    Article  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1986) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different light conditions. In: Biggins J (ed) Progress in photosynthetic research. M. Nijhoff Publishers, Dordrecht, pp 221–224

    Google Scholar 

  • Bonan GB, DeFries RS, Coe MT, Ojima DS (2004) Land use and climate. In: Gutman G (ed) Land change science. Kluwer Academic Publishers, Amsterdam, pp 301–314

    Chapter  Google Scholar 

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    Article  Google Scholar 

  • Botta A, Foley JA (2002) Effects of climate variability and disturbances on the Amazonian terrestrial ecosystems dynamics. Global Biogeochem Cycles 16:1–11

    Article  Google Scholar 

  • Botta A, Ramankutty N, Foley JA (2002) Long-term variations of climate and carbon fluxes over the Amazon basin. Geophys Res Lett 29:1–4

    Article  Google Scholar 

  • Bruijnzeel LA (1990) Hydrology of moist tropical forests and effects of conversion: a state of knowledge review. UNESCO, Paris

    Google Scholar 

  • Bruijnzeel LA (1991) Hydrological impacts of tropical forest conversion. Nature Resour 27:36–46

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Cardille JA, Foley JA (2003) Agricultural land-use change in Brazilian Amazonia between 1980 and 1995: evidence from integrated satellite and census data. Remote Sens Environ 87:551–562

    Article  Google Scholar 

  • Coe MT, Costa MH, Botta A, Birkett C (2002) Long-term simulations of discharge and floods in the Amazon basin. J Geophys Res 107:1–17

    Google Scholar 

  • Coe MT, Costa MH, Howard EA (2007) Simulating the surface waters of the Amazon River Basin: impacts of new river geomorphic and dynamic flow parameterizations. Hydrol Process 21:2542–2553

    Google Scholar 

  • Coe MT, Costa MH, Soares-Filho BS (2009) The Influence of historical and potential future deforestation on the stream flow of the Amazon River—land surface processes and atmospheric feedbacks. J Hydrol 369:165–174

    Article  Google Scholar 

  • Costa M, Foley J (1997) Water balance of the Amazon Basin: dependence on vegetation cover and canopy conductance. J Geophys Res 102:23973–23989

    Article  Google Scholar 

  • Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol 283:206–217

    Article  Google Scholar 

  • Dunne T, Leopold LB (1978) Water in environmental planning. W.H. Freeman and Company, New York

    Google Scholar 

  • Eagleson PS (1978) Climate, soil, and vegetation 1. Introduction to water balance dynamics. Water Resour Res 14:705–712

    Article  Google Scholar 

  • Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates and consequences. Conserv Biol 19:680–688

    Article  Google Scholar 

  • Ferreira LG, Asner GP, Knapp DE, Davidson EA, Coe MT, Bustamante MMC, Oliveira EL (in press) Equivalent water thickness in savanna ecosystems: MODIS estimates based on ground and EO-1 Hyperion data. Int J Remote Sens

  • Fetter CW (2001) Applied hydrogeology. Prentice Hall, New Jersey

    Google Scholar 

  • Foley JA, Botta A, Coe MT, Costa MH (2002) El Nino-Southern oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochem Cycles 16:1–17

    Article  Google Scholar 

  • Franco SM (2003) O grande vale do Araguaia: transformações da bacia do Araguaia e Goiás. Instituto de Estúdios Sócio Ambientais, Universidade Federal de Goiás, Goiânia, p 382

    Google Scholar 

  • Garcia-Montiel DC, Coe MT, Cruz MP, Ferreira JN, da Silva EM, Davidson EA (2008) Estimating seasonal changes in volumetric soil water content at landscape scales in a Savanna ecosystem using two-dimensional resistivity profiling. Earth Interact 12:1–25

    Article  Google Scholar 

  • Gardner WR (1983) Soil properties and efficient water use: an overview. In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitations to efficient water use in crop production. American Society of Agronomy, Madison, WI, pp 45–46

    Google Scholar 

  • Giambelluca TW, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Hoffmann WA, Franco AC, Buchert MP (2009) Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agric For Meteorol 149:1365–1376

    Article  Google Scholar 

  • Green WH, Ampt GA (1911) Studies on soil physics, 1. The flow of air and water through soils. J Agric Sci 4:1–24

    Article  Google Scholar 

  • Hayhoe S, Neill C, McHorney R, Porder S, Lefebvre P (2010) Amazon forest conversion to soy agriculture increases stream discharge but not stormflow. Glob Change Biol. doi:10.1111/j.1365-2486.2011.02392.x

  • Kaimowitz D, Mertens B, Wunder S, Pacheco P (2004) Hamburger connection fuels Amazon destruction. Center for International Forest Research, Bangor, Indonesia

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kistler R (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorolo Assoc 82:247–267

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713

    Article  Google Scholar 

  • Knox JC (1972) Alluviation in Southwestern Wisconsin. Ann Assoc Am Geogr 62:401–410

    Article  Google Scholar 

  • Knox JC (2006) Floodplain sedimentation in the Upper Mississippi Valley: natural versus human accelerated. Geomorphology 79:286–310

    Article  Google Scholar 

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochem Cycles 14:795–825

    Article  Google Scholar 

  • Latrubesse EM (2008) Patterns of anabranching channels: the ultimate end member adjustment of mega rivers. Geomorphology 101:130–145

    Article  Google Scholar 

  • Latrubesse EM, Amsler M, Morais M, Aquino S (2009) The geomorphological response of a large pristine alluvial river to tremendous deforestation in the South American Tropics: the case of the Araguaia River. J Geomorphol 113:239–252

    Article  Google Scholar 

  • Li KY, Coe MT, Ramankutty N (2005) Investigation of hydrological variability in West Africa using land surface models. J Clim 18:3173–3188

    Article  Google Scholar 

  • Li KY, Coe MT, Ramankutty N, De Jong R (2007) Modeling the hydrological impact of land-use change in West Africa. J Hydrol 337:258–268

    Article  Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999a) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301

    Article  Google Scholar 

  • Meinzer FC, Goldstein G, Franco AC, Bustamante M, Igler E, Jackson P, Caldas L, Rundel PW (1999b) Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species. Funct Ecol 13:273–282

    Article  Google Scholar 

  • Meinzer FC, Brooks JR, Bucci SJ, Goldstein G, Scholz FG, Warren JM (2004) Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol 24:919–928

    Google Scholar 

  • Mitchell TD, Carter T, Jones P, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre working paper (p 25). Tyndall Center for Climate Change Research,

  • Moreira MZ, Scholz FG, Bucci SJ, Sternberg LS, Goldstein G, Meinzer FC, Franco AC (2003) Hydraulic lift in a neotropical savanna. Funct Ecol 17:573–581

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  • Nepstad DC, Stickler CM, Soares Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc 363:1737–1746

    Article  Google Scholar 

  • Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005) Deep root function in the soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19:574–581

    Article  Google Scholar 

  • Ramankutty N, Foley JA (1998) Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeochem Cycles 12:667–685

    Article  Google Scholar 

  • Raymond PA, Oh NH, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451:449–452

    Article  Google Scholar 

  • Sano EE, Rosa R, B JL, Ferreira LG (2008) Semidetailed land use mapping in the Cerrado. Pesquisa Agropecuária Brasileira 43:153–156

    Article  Google Scholar 

  • Sano EE, Rosa R, Brito JLS, Ferreira LG (2009) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124

    Google Scholar 

  • Santos AJB, Quesada CA, da Silva GT, Maia JF, Miranda HS, Miranda AC, Lloyd JL (2004) High rates of net ecosystem carbon assimilation by Brachiara pasture in the Brazilian Cerrado. Glob Change Biol 10:877–885

    Article  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC (2002) Hydraulic redistribution of soil water by neotropical savanna trees. Tree Physiol 22:603–612

    Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Moreira MZ, Meinzer FC, Domec J-C, Vega RV, Franco AC, Miralles-Wilhelm F (2008) Biophysical and life history determinants of hydraulic lift in Neotropical savanna trees. Funct Ecol 22:773–786

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contributions of Paul Lefebvre in developing figures, Dr. Eric A. Davidson and Wendy Kingerlee’s helpful comments, and Dr. Hewlley Acioli’s help with precipitation data. We also thank two anonymous reviewers for comments that greatly improved the manuscript. Funding was provided by the United States National Aeronautics and Space Administration, Land Cover and Land Use Change and LBA-ECO programs, CNPq-Brazil, CYTED, and VITAE Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Coe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coe, M.T., Latrubesse, E.M., Ferreira, M.E. et al. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105, 119–131 (2011). https://doi.org/10.1007/s10533-011-9582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9582-2

Keywords

Navigation