Skip to main content
Log in

Interannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Semi-arid ecosystems with annual moisture inputs dominated by snowmelt cover much of the western United States, and a better understanding of their seasonal drivers of soil respiration is needed to predict consequences of climatic change on soil CO2 efflux. We assessed the relative importance of temperature, moisture, and plant phenology on soil respiration during seasonal shifts between cold, wet winters and hot, dry summers in a Rocky Mountain meadow over 3.5 separate growing seasons. We found a consistent, unique pattern of seasonal hysteresis in the annual relationship between soil respiration and temperature, likely representative for this ecosystem type, and driven by (1) continued increase in soil T after summer senescence of vegetation, and (2) reduced soil respiration during cold, wet periods at the beginning versus end of the growing season. The timing of meadow senescence varied between years with amount of cold season precipitation, but on average occurred 45 days before soil temperature peaked in late-summer. Autumn soil respiration was greatest when substantial autumn precipitation events occurred early. Surface CO2 efflux was temporarily decoupled from respiratory production during winter 2006/2007, due to effects of winter surface snow and ice on mediating the diffusion of CO2 from deep soil horizons to the atmosphere. Upon melt of a capping surface ice layer, release of soil-stored CO2 was determined to be 65 g C, or ~10 % of the total growing season soil respiration for that year. The shift between soil respiration sources arising from moisture-limited spring plant growth and autumn decomposition indicates that annual mineralization of soil carbon will be less dependent on projected changes in temperature than on future variations in amount and timing of precipitation for this site and similar semi-arid ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson-Teixeira KJ, Delong JP, Fox AM, Brese DA, Litvak ME (2011) Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Glob Chang Biol 17:410–424

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  Google Scholar 

  • Baptist F, Yoccoz N, Choler P (2010) Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant Soil 328:397–410

    Article  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    Article  Google Scholar 

  • Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD (2008) Human-induced changes in the hydrology of the western United States. Science 319:1080–1083

    Article  Google Scholar 

  • Blankinship JC, Hart SC (2012) Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: a meta-analysis. Ecosphere 3. doi: 10.1890/ES11-00225.1

  • Boisvenue C, Running SW (2010) Simulations show decreasing carbon stocks and potential for carbon emissions in Rocky Mountain forests over the next century. Ecol Appl 20:1302–1319

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582

    Article  Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15:808–824

    Article  Google Scholar 

  • Bowling DR, Grote EE, Belnap J (2011) Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. J Geophys Res 116:G03028

    Article  Google Scholar 

  • Brooks PD, McKnight D, Elder K (2005) Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob Chang Biol 11:231–238

    Article  Google Scholar 

  • Camarda M, De Gregorio S, Favara R, Gurrieri S (2007) Evaluation of carbon isotope fractionation of soil CO2 under an advective-diffusive regimen: a tool for computing the isotopic composition of unfractionated deep source. Geochim Cosmochim Acta 71:3016–3027

    Article  Google Scholar 

  • Cayan DR, Kammerdiener SA, Dettinger MD, Caprio JM, Peterson DH (2001) Changes in the onset of spring in the western United States. Bull Am Meteorol Soc 82:399–415

    Article  Google Scholar 

  • Chen S, Lin G, Huang J, Jenerette GD (2009) Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob Chang Biol 15:2450–2461

    Article  Google Scholar 

  • Chou WW, Silver WL, Jackson RD, Thompson AW, Allen-Diaz B (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Glob Chang Biol 14:1382–1394

    Article  Google Scholar 

  • Coxson DS, Parkinson D (1987) Winter respiratory activity in aspen woodland forest floor litter and soils. Soil Biol Biochem 19:49–59

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  Google Scholar 

  • de Dato G, De Angelis P, Sirca C, Beier C (2010) Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga). Plant Soil 327:153–166

    Article  Google Scholar 

  • de Jong E, Schappert HJV (1972) Calculation of soil respiration and activity from CO2 profiles in the soil. Soil Sci 113:328–333

    Article  Google Scholar 

  • DeSutter TM, Sauer TJ, Parkin TB (2006) Porous tubing for use in monitoring soil CO2 concentrations. Soil Biol Biochem 38:2676–2681

    Article  Google Scholar 

  • Ehleringer JR, Arnow LA, Arnow T, McNulty IB, Negus NC (1992) Red Butte Canyon research natural area: history, flora, geology, climate, and ecology. Great Basin Nat 52:95–121

    Google Scholar 

  • Fierer N, Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805

    Article  Google Scholar 

  • Fierer N, Chadwick OA, Trumbore SE (2005) Production of CO2 in soil profiles of a California annual grassland. Ecosystems 8:412–429

    Article  Google Scholar 

  • Flechard CR, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J (2007) Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agric For Meteorol 142:66–84

    Article  Google Scholar 

  • Gamnitzer U, Moyes AB, Bowling DR, Schnyder H (2011) Measuring and modelling the isotopic composition of soil respiration: insights from a grassland tracer experiment. Biogeosciences 8:1333–1350

    Article  Google Scholar 

  • Gillies RR, Wang S-Y, Booth MR (2012) Observational and synoptic analyses of the winter precipitation regime change over Utah. J Clim 25:4679–4698

    Article  Google Scholar 

  • Hirsch AI, Trumbore SE, Goulden ML (2002) Direct measurement of the deep soil respiration accompanying seasonal thawing of a boreal forest soil. J Geophys Res 108:8221. doi:10.1029/2001JD000921

    Google Scholar 

  • Howard DM, Howard PJA (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem 25:1537–1546

    Article  Google Scholar 

  • Hu J, Moore DJP, Burns SP, Monson RK (2010) Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob Chang Biol 16:771–783. doi:710.1111/j.1365-2486.2009.01967.x

    Article  Google Scholar 

  • Hultine KR, Bush SE, West AG, Ehleringer JR (2007) Population structure, physiology and ecohydrological impacts of dioecious riparian tree species of western North America. Oecologia 154:85–93

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Irvine J, Law BE, Martin JG, Vickers D (2008) Interannual variation in soil CO2 efflux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine. Glob Chang Biol 14:2848–2859

    Article  Google Scholar 

  • Jassal R, Black A, Novak M, Morgenstern K, Nesic Z, Gaumont-Guay D (2005) Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agric For Meteorol 130:176–192

    Article  Google Scholar 

  • Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR (2012) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9:2459–2483

    Article  Google Scholar 

  • Knowles N, Dettinger MD, Cayan DR (2006) Trends in snowfall versus rainfall in the Western United States. J Clim 19:4545–4559

    Article  Google Scholar 

  • Kueppers LM, Harte J (2005) Subalpine forest carbon cycling: short- and long-term influence of climate and species. Ecol Appl 15:1984–1999

    Article  Google Scholar 

  • Liptzin D, Williams MW, Helmig D, Seok B, Filippa G, Chowanski K, Hueber J (2009) Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry 95:151–166

    Article  Google Scholar 

  • Maseyk K, Wingate L, Seibt U, Ghashghaie J, Bathellier C, Almeida P, Lobo de Vale R, Pereira JS, Yakir D, Mencuccini M (2009) Biotic and abiotic factors affecting the δ13C of soil respired CO2 in a Mediterranean oak woodland. Isot Environ Health Stud 45:343–359

    Article  Google Scholar 

  • Massman WJ (1998) A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmos Environ 32:1111–1127

    Article  Google Scholar 

  • Miller AE, Schimel JP, Meixner T, Sickman JO, Melack JM (2005) Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol Biochem 37:2195–2204

    Article  Google Scholar 

  • Millington RJ (1959) Gas diffusion in porous media. Science 130:100–102

    Article  Google Scholar 

  • Moyes AB, Gaines SJ, Siegwolf RTW, Bowling DR (2010) Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration. Plant Cell Environ 33:1804–1819

    Article  Google Scholar 

  • Munson SM, Benton TJ, Lauenroth WK, Burke IC (2010) Soil carbon flux following pulse precipitation events in the shortgrass steppe. Ecol Res 25:205–211

    Article  Google Scholar 

  • Olsen HR, Van Miegroet H (2009) Factors affecting carbon dioxide release from forest and rangeland soils in Northern Utah. Soil Sci Soc Am J 74:282–291

    Article  Google Scholar 

  • Pacific VJ, McGlynn BL, Riveros-Iregui DA, Epstein HE, Welsch DL (2009) Differential soil respiration responses to changing hydrologic regimes. Water Resour Res 45: W07201. doi: 10.1029/2009WR007721

  • Phillips CL, Nickerson N, Risk D, Bond BJ (2011) Interpreting diel hysteresis between soil respiration and temperature. Glob Chang Biol 17:515–527

    Article  Google Scholar 

  • Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr A, Chen AP, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52

    Article  Google Scholar 

  • Raich JW (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    Google Scholar 

  • Rayment MB, Jarvis PG (1997) An improved open chamber system for measuring soil CO2 effluxes in the field. J Geophys Res 102:28779–28784

    Article  Google Scholar 

  • Richardson AD, Andy Black T, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, William Munger J, Moors E, Piao S, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc B 365:3227–3246

    Article  Google Scholar 

  • Riveros-Iregui DA, McGlynn BL, Epstein HE, Welsch DL (2008) Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: discrete surface chambers and continuous soil CO2 concentration probes. J Geophys Res 113: G04027. doi: 10.1029/2008JG000811

  • Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27

    Article  Google Scholar 

  • Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia 151:54–58

    Article  Google Scholar 

  • Saetre P, Stark JM (2005) Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia 142:247–260

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  Google Scholar 

  • Seager R, Ting MF, Held I, Kushnir Y, Lu J, Vecchi G, Huang HP, Harnik N, Leetmaa A, Lau NC, Li CH, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  Google Scholar 

  • Simunek J, Saurez DL (1993) Modeling of carbon dioxide transport and production in soil 1. Model development. Water Resour Res 29:487–497

    Article  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54:1619–1625

    Article  Google Scholar 

  • Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104:13–23

    Article  Google Scholar 

  • Tang JW, Baldocchi DD (2005) Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry 73:183–207

    Article  Google Scholar 

  • Vargas R, Baldocchi DD, Bahn M, Hanson PJ, Hosman KP, Kulmala L, Pumpanen J, Yang B (2011) On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations. New Phytol. doi:10.1111/j.1469-8137.2011.03771.x

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Google Scholar 

Download references

Acknowledgments

A.B. Moyes is grateful for funding during this project from the A. Herbert and Marian W. Gold scholarship. Greg Winston provided helpful discussions about the design of the soil CO2 sampling system. Sarah Gaines was tremendously helpful with the soil core diffusion measurements in the lab. Soil profile data will be made available for collaborative use upon request—contact the senior author. This study was funded by the University of Utah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Moyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyes, A.B., Bowling, D.R. Interannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow. Biogeochemistry 113, 683–697 (2013). https://doi.org/10.1007/s10533-012-9797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9797-x

Keywords

Navigation