Skip to main content

Advertisement

Log in

Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Tidal wetlands are productive ecosystems with the capacity to sequester large amounts of carbon (C), but we know relatively little about the impact of climate change on wetland C cycling in lower salinity (oligohaline and tidal freshwater) coastal marshes. In this study we assessed plant production, C cycling and sequestration, and microbial organic matter mineralization at tidal freshwater, oligohaline, and salt marsh sites along the salinity gradient in the Delaware River Estuary over four years. We measured aboveground plant biomass, carbon dioxide (CO2) and methane (CH4) exchange between the marsh and atmosphere, microbial sulfate reduction and methanogenesis in marsh soils, soil biogeochemistry, and C sequestration with radiodating of soils. A simple model was constructed to estimate monthly and annually integrated rates of gross ecosystem production (GEP), ecosystem respiration (ER) to carbon dioxide (\( {\text{ER}}_{{{\text{CO}}_{2} }} \)) or methane (\( {\text{ER}}_{{{\text{CH}}_{4} }} \)), net ecosystem production (NEP), the contribution of sulfate reduction and methanogenesis to ER, and the greenhouse gas (GHG) source or sink status of the wetland for 2 years (2007 and 2008). All three marsh types were highly productive but evidenced different patterns of C sequestration and GHG source/sink status. The contribution of sulfate reduction to total ER increased along the salinity gradient from tidal freshwater to salt marsh. The Spartina alterniflora dominated salt marsh was a C sink as indicated by both NEP (~140 g C m−2 year−1) and 210Pb radiodating (336 g C m−2 year−1), a minor sink for atmospheric CH4, and a GHG sink (~620 g CO2-eq m−2 year−1). The tidal freshwater marsh was a source of CH4 to the atmosphere (~22 g C–CH4 m−2 year−1). There were large interannual differences in plant production and therefore C and GHG source/sink status at the tidal freshwater marsh, though 210Pb radiodating indicated modest C accretion (110 g C m−2 year−1). The oligohaline marsh site experienced seasonal saltwater intrusion in the late summer and fall (up to 10 mS cm−1) and the Zizania aquatica monoculture at this site responded with sharp declines in biomass and GEP in late summer. Salinity intrusion was also linked to large effluxes of CH4 at the oligohaline site (>80 g C–CH4 m−2 year−1), making this site a significant GHG source (>2,000 g CO2-eq m−2 year−1). The oligohaline site did not accumulate C over the 2 year study period, though 210Pb dating indicated long term C accumulation (250 g C m−2 year−1), suggesting seasonal salt-water intrusion can significantly alter C cycling and GHG exchange dynamics in tidal marsh ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams CA, Andrews JE, Jickells T (2012) Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorus burial in new intertidal and saltmarsh sediments. Sci Total Environ 434:240–251

    Article  Google Scholar 

  • Albert DB, Martens CS (1997) Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Mar Chem 56(1–2):27–37

    Article  Google Scholar 

  • Andrews JE, Jickells TD, Adams CA, Parkes DJ, Kelly SD (2012) Sediment record and storage of organic carbon and the nutrient elements (N, P, Si) in estuaries and near-coastal seas. In: Wolanski E, McLusky D (eds) Treatise on estuarine and coastal science, vol 4. Academic Press, London, pp 9–38

    Google Scholar 

  • Armstrong J, Armstrong W (1991) A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat Bot 39:75–88

    Article  Google Scholar 

  • Baldwin AH, Egnotovich MS, Clarke E (2001) Hydrologic change and vegetation of tidal freshwater marshes: field, greenhouse, and seed-bank experiments. Wetlands 21(4):519–531

    Article  Google Scholar 

  • Barendregt A, Whigham D, Baldwin A (2009) Tidal freshwater wetlands. Backhuys, Leiden

    Google Scholar 

  • Bartlett KB, Bartlett DS, Harriss RC, Sebacher DI (1987) Methane emissions along a salt-marsh salinity gradient. Biogeochemistry 4(3):183–202

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26(4):889–916

    Article  Google Scholar 

  • Brix H, Sorrell BK, Orr PT (1992) Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol Oceanogr 37:1420–1433

    Article  Google Scholar 

  • Capone DG, Kiene RP (1988) Comparison of microbial dynamics in marine and fresh-water sediments: contrasts in anaerobic carbon catabolism. Limnol Oceanogr 33(4):725–749

    Article  Google Scholar 

  • Chambers LG, Osborne TZ, Reddy KR (2013) Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry 115:363–383

    Article  Google Scholar 

  • Chanton JP, Whiting GJ, Showers WJ, Crill PM (1992) Methane flux from Peltandra virginica: stable isotope tracing and chamber effects. Glob Biogeochem Cycles 6:15–31

    Article  Google Scholar 

  • Chmura GL (2013) What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean Coast Manag 83:25–31

    Article  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17(4):1111. doi:10.1029/2002GB001917

    Article  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  Google Scholar 

  • Craft CB, Richardson CJ (1998) Recent and long-term organic soil accretion and nutrient accumulation in the everglades. Soil Sci Soc Am J 62(3):834–843

    Article  Google Scholar 

  • Dacey JWH (1981) How aquatic plants ventilate. Oceanus 24:43–51

    Google Scholar 

  • Dai T, Wiegert RG (1996) Estimation of the primary productivity of Spartina alterniflora using a canopy model. Ecography 19(4):410–423

    Article  Google Scholar 

  • Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490(7420):388–392

    Article  Google Scholar 

  • Delaune RD, Smith CJ, Patrick WH (1983) Methane release from Gulf-Coast wetlands. Tellus Ser B Chem Phys Meteorol 35(1):8–15

    Article  Google Scholar 

  • Doumelele DG (1981) Primary production and seasonal aspects of emergent plants in a tidal fresh-water marsh. Estuaries 4(2):139–142

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Gribsholt B, Kostka JE, Kristensen E (2003) Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Mar Ecol Prog Ser 259:237–251

    Article  Google Scholar 

  • Hines ME, Knollmeyer SL, Tugel JB (1989) Sulfate reduction and other sedimentary biogeochemistry in a northern New-England salt-marsh. Limnol Oceanogr 34(3):578–590

    Article  Google Scholar 

  • Hines ME, Evans RS, Genthner BRS, Willis SG, Friedman S, Rooney-Varga JN, Devereux R (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65(5):2209–2216

    Google Scholar 

  • Hirota M, Senga Y, Seike Y, Nohara S, Kunii H (2007) Fluxes of carbon dioxide, methane, and nitrous oxide in two contrastive fringing zones of a coastal lagoon, Lake Nakaumi, Japan. Chemosphere 68:597–603

    Article  Google Scholar 

  • Hopfensperger KN, Kaushal SS, Findlay SEG, Cornwell JC (2009) Influence of plant communities on denitrification in a tidal freshwater marsh of the Potomac River, United States. J Environ Qual 38(2):618–626

    Article  Google Scholar 

  • Hopkinson CS, Schubauer JP (1984) Static and dynamic aspects of nitrogen cycling in the salt-marsh graminoid Spartina-alterniflora. Ecology 65(3):961–969

    Article  Google Scholar 

  • Howarth RW (1993) Microbial processes in salt-marsh sediments. In: Ford TE (ed) Aquatic microbiology: an ecological approach. Blackwell, Oxford, pp 239–259

    Google Scholar 

  • Howarth RW, Giblin A (1983) Sulfate reduction in the salt marshes at Sapelo Island, Georgia. Limnol Oceanogr 28(1):70–82

    Article  Google Scholar 

  • Inamori R, Gui P, Dass P, Matsumura M, Xu K-Q, Kondo T, Ebie Y, Inamori Y (2007) Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms. Process Biochem 42:363–373

  • IPCC (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG (eds) Intergovernmental Panel on Climate Change, Geneva

  • Jørgensen BB (1982) Mineralization of organic-matter in the sea bed: the role of sulfate reduction. Nature 296(5858):643–645

    Article  Google Scholar 

  • Kallmeyer J, Ferdelman TG, Weber A, Fossing H, Jørgensen BB (2004) A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol Oceanogr 2:171–180

    Article  Google Scholar 

  • Keller JK, Sutton-Grier AE, Bullock AL, Megonigal JP (2013) Anaerobic metabolism in tidal freshwater wetlands: I. Plant removal effects on iron reduction and methanogenesis. Estuar Coasts 36:457–470

    Article  Google Scholar 

  • Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60

    Article  Google Scholar 

  • Krauss KW, Whitbeck JL, Howard RJ (2012) On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater). Plant Soil 358:265–274

    Article  Google Scholar 

  • Leck MA, Simpson RL (1995) Ten-year seed bank and vegetation dynamics of a tidal freshwater marsh. Am J Bot 82(12):1547–1557

    Article  Google Scholar 

  • Livesley SJ, Andrusiak SM (2012) Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuar Coast Shelf Sci 97:19–27

    Article  Google Scholar 

  • McKee KL, Mendelssohn IA (1989) Response of freshwater marsh plant community to increased salinity and increased water level. Aquat Bot 34:301–316

    Article  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Megonigal JP, Neubauer SC (2009) Biogeochemistry of tidal freshwater wetlands. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: An integrated ecosystem approach. Elsevier, Amsterdam, pp 535–562

    Google Scholar 

  • Megonigal JP, Schlesinger WH (2002) Methane-limited methanotrophy in tidal freshwater swamps. Glob Biogeochem Cycles 16(4):1088. doi:10.1029/2001GB001594

    Article  Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350

    Article  Google Scholar 

  • Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level rise. Nat Geosci 2:471–478

    Article  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597

    Article  Google Scholar 

  • Morris JT, Haskin B (1990) A 5-year record of aerial primary production and stand characteristics of Spartina-alterniflora. Ecology 71(6):2209–2217

    Article  Google Scholar 

  • Moseman-Valtiera S (2012) Reconsidering climatic roles of marshes: are they sinks or sources of greenhouse gases? In: Abreu DC, Borbón SL (eds) Marshes: ecology, management and conservation. Nova Science Publishers, Hauppauge, pp 1–48

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26(1):31–36

    Article  Google Scholar 

  • Neubauer SC (2013) Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuar Coasts 36(3):491–507

    Article  Google Scholar 

  • Neubauer SC, Miller WD, Anderson IC (2000) Carbon cycling in a tidal freshwater marsh ecosystem: a carbon gas flux study. Mar Ecol Prog Ser 199:13–30

    Article  Google Scholar 

  • Neubauer SC, Givler K, Valentine SK, Megonigal JP (2005) Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 86(12):3334–3344

    Article  Google Scholar 

  • Neubauer SC, Franklin RB, Berrier DJ (2013) Saltwater intrusion into tidal freshwater marshes alters the biogeochemical cycling of organic carbon. Biogeosciences 10:8171–8183

    Article  Google Scholar 

  • Noe GB, Krauss KW, Lockaby BG, Conner WH, Hupp CR (2013) The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry 114:225–244

    Article  Google Scholar 

  • Odum WE (1988) Comparative ecology of tidal freshwater and salt marshes. Annu Rev Ecol Syst 19:147–176

    Article  Google Scholar 

  • Odum WE, Heywood MA (1978) Decomposition of intertidal freshwater plants. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands, ecological processes and management potential. Academic Press, New York, pp 89–97

    Google Scholar 

  • Oldfield F, Appleby PG (1984) Empirical testing of 210Pb-dating models for lake sediments. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. University of Minnesota, Minneapolis, pp 93–124

    Google Scholar 

  • Oliveira V, Santos AL, Coelho F, Gomes NCM, Silva H, Almeida A, Cunha A (2010) Effects of monospecific banks of salt marsh vegetation on sediment bacterial communities. Microb Ecol 60(1):167–179

    Article  Google Scholar 

  • Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69(17):4267–4281

    Article  Google Scholar 

  • Pezeshki SR, DeLaune RD, Patrick WH Jr (1987) Response of the freshwater marsh species, Panicum hemitomon Schult., to increased salinity. Freshw Biol 17:195–200

    Article  Google Scholar 

  • Phleger CF (1971) Effect of salinity on growth of a salt marsh grass. Ecology 52(5):908–911

    Article  Google Scholar 

  • Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–842

    Article  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to modeling future sea level rise. Science 315:358–360

    Article  Google Scholar 

  • Redfield AE (1965) Ontogeny of a salt marsh estuary. Science 147:50–55

    Article  Google Scholar 

  • Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil-erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19(2):215–233

    Article  Google Scholar 

  • Roden EE, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41:1733–1748

    Article  Google Scholar 

  • Ross AC (2013) Influences of salinity variability and change in the Delaware Estuary. Thesis, The Pennsylvania State University

  • Schubauer JP, Hopkinson CS (1984) Above-ground and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnol Oceanogr 29(5):1052–1065

    Article  Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB (1985) Methane emissions to the atmosphere through aquatic plants. J Environ Qual 14:40–46

    Article  Google Scholar 

  • Seitzinger SP (1988) Denitrification in fresh-water and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33(4):702–724

    Article  Google Scholar 

  • Smith KK, Good RE, Good NF (1979) Production dynamics for above and belowground components of a New-Jersey Spartina-alterniflora tidal marsh. Estuar Coast Mar Sci 9(2):189–201

    Article  Google Scholar 

  • Smith CJ, DeLaune RD, Patrick WH Jr (1983) Nitrous oxide emission from Gulf Coast wetlands. Geochim Cosmochim Acta 47:1805–1814

    Article  Google Scholar 

  • Smith SJ, Thomson AM, Rosenberg NJ, Izaurralde RC, Brown RA, Wigley TML (2005) Climate change impacts for the conterminous USA: an integrated assessment: Part 1. Scenarios and context. Climatic Change 69(1):7–25

    Article  Google Scholar 

  • Solórzano L (1969) Determination of ammonia in natural waters by phenolhypochlorite method. Limnol Oceanogr 14(5):799–801

    Article  Google Scholar 

  • Sorrel BK, Boon PI (1994) Convective gas-flow in Eleocharis sphacelata R. Br.: methane transport and release from wetlands. Aquat Bot 47:197–212

    Article  Google Scholar 

  • Spalding EA, Hester MW (2007) Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise. Estuar Coasts 30(2):214–225

    Google Scholar 

  • Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution: a review. Geoderma 99(3–4):169–198

    Article  Google Scholar 

  • Sun ZG, Wang LL, Mou XL, Jiang HH, Sun WL (2014) Spatial and temporal variations of nitrous oxide flux between coastal marsh and the atmosphere in the Yellow River estuary of China. Environ Sci Pollut Bull 21:419–433

    Article  Google Scholar 

  • Sutter LA, Perry JE, Chambers RM (2014) Tidal freshwater marsh plant responses to low level salinity increases. Wetlands 34:167–175

    Article  Google Scholar 

  • Sutton-Grier AE, Megonigal JP (2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biol Biochem 43(2):413–420

    Article  Google Scholar 

  • Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2(10):681–686

    Article  Google Scholar 

  • Tobias C, Neubauer SC (2009) Salt marsh biogeochemistry: an overview. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam

    Google Scholar 

  • Tong C, Huang JF, Hu ZQ, Jin YF (2013) Diurnal variations of carbon dioxide, methane, and nitrous oxide vertical fluxes in a subtropical estuarine marsh on neap and spring tide days. Estuar Coasts 36:633–642

    Article  Google Scholar 

  • Vann CD, Megonigal JP (2003) Elevated CO2 and water depth regulation of methane emissions: comparison of woody and non-woody wetland plant species. Biogeochemistry 63(2):117–134

    Article  Google Scholar 

  • Vile MA, Bridgham SD, Wieder RK, Novák M (2003) Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland. Ecol Appl 13:720–734

    Article  Google Scholar 

  • Wang YH, Ye C, Yang H, Zhang JX, Huang CC, Xie B (2013) Methane formation in soil-plant systems treating wastewater as influenced by microbial populations. Environ Earth Sci 70:1647–1652

    Article  Google Scholar 

  • Watson A, Stephen KD, Nedwell DB, Arah JRM (1997) Oxidation of methane in peat: kinetics of CH4 and O2 removal and the role of plant roots. Soil Biol Biochem 29:1257–1267

    Article  Google Scholar 

  • Webb JW (1983) Soil-water salinity variations and their effects on Spartina alterniflora. Contrib Mar Sci 26:1–13

    Google Scholar 

  • Weider RK, Scott KD, Kamminga SK, Vile MA, Vitt DH, Xu B, Benscoter BW, Bhatti JS (2009) Post-fire carbon balance in boreal bogs of Alberta Canada. Glob Change Biol 15:63–81

    Article  Google Scholar 

  • Weston NB (2014) Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuar Coasts 37:1–23

    Article  Google Scholar 

  • Weston NB, Dixon RE, Joye SB (2006) Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization. J Geophys Res Biogeosci 111:G01009. doi:10.1029/2005JG000071

    Article  Google Scholar 

  • Weston NB, Vile MA, Neubauer SC, Velinsky DJ (2011) Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102(1–3):135–151

    Article  Google Scholar 

  • Westrich JT, Berner RA (1988) The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiol J 6:99–117

    Article  Google Scholar 

  • Whigham DF (1978) Relationship between aboveground and belowground biomass of freshwater tidal wetland macrophytes. Aquat Bot 5(4):355–364

    Article  Google Scholar 

  • Whigham D, Simpson R (1977) Growth, mortality, and biomass partitioning in freshwater tidal wetland populations of wild rice (Zizania-aquatica-var-aquatica). Bull Torrey Bot Club 104(4):347–351

    Article  Google Scholar 

  • Whigham DF, McCormick J, Good RE, Simpson RL (1978) Biomass and primary production in freshwater tidal wetlands of the middle Atlantic Coast. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York, pp 3–20

    Google Scholar 

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364(6440):794–795

    Article  Google Scholar 

  • Whiting GJ, Chanton JP (1996) Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms. Aquat Bot 54:237–253

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus Ser B Chem Phys Meteorol 53(5):521–528

    Article  Google Scholar 

  • Whiting GJ, Bartlett DS, Fan SM, Bakwin PS, Wofsy SC (1992) Biosphere atmosphere CO2 exchange in tundra ecosystems: community characteristics and relationships with multispectral surface reflectance. J Geophys Res Atmos 97(D15):16671–16680

    Article  Google Scholar 

  • Willis JM, Hester MW (2004) Interactive effects of salinity, flooding, and soil type on Panicum hemitomon. Wetlands 24(1):43–50

    Article  Google Scholar 

Download references

Acknowledgments

We wish to especially thank James Quinn for substantial assistance in the field and laboratory. We received additional help from Paul Kiry, Kimberli Scott, Roger Thomas, Olivia Gibb, Christine McLaughlin, Avni Malhotra, and Stephen Mowbray, and undergraduate students Eric Au, Patrick Costello, Amanda Foskett, Margaret Garcia, Neil Mehta, Justin Meschter, Michael Patson, Melanie Pingoy, Tatjana Zivkovic, Daniel Russo, Mariozza Santini, John Ufferfilge, Justin Walsh, and Paul Weibel. We thank Lori Sutter, Julian Andrews, Chris Evans, and an anonymous reviewer for comments that improved the manuscript. This research was supported by Environmental Protection Agency Science to Achieve Results (EPA-STAR) Grant RD 83222202 (to MAV, DJV and SCN) and by National Science Foundation Grant DEB-0919173 (to NBW and MAV). This is contribution number 1695 from the University of South Carolina’s Belle W. Baruch Institute for Marine and Coastal Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel B. Weston.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weston, N.B., Neubauer, S.C., Velinsky, D.J. et al. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120, 163–189 (2014). https://doi.org/10.1007/s10533-014-9989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-014-9989-7

Keywords

Navigation