Skip to main content

Advertisement

Log in

River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

River networks modify material transfer from land to ocean. Understanding the factors regulating this function for different gaseous, dissolved, and particulate constituents is critical to quantify the local and global effects of climate and land use change. We propose the River Network Saturation (RNS) concept as a generalization of how river network regulation of material fluxes declines with increasing flows due to imbalances between supply and demand at network scales. River networks have a tendency to become saturated (supply ≫ demand) under higher flow conditions because supplies increase faster than sink processes. However, the flow thresholds under which saturation occurs depends on a variety of factors, including the inherent process rate for a given constituent and the abundance of lentic waters such as lakes, ponds, reservoirs, and fluvial wetlands within the river network. As supply increases, saturation at network scales is initially limited by previously unmet demand in downstream aquatic ecosystems. The RNS concept describes a general tendency of river network function that can be used to compare the fate of different constituents among river networks. New approaches using nested in situ high-frequency sensors and spatially extensive synoptic techniques offer the potential to test the RNS concept in different settings. Better understanding of when and where river networks saturate for different constituents will allow for the extrapolation of aquatic function to broader spatial scales and therefore provide information on the influence of river function on continental element cycles and help identify policy priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems: excess nitrogen from fossil fuel combustion may stress the biosphere. Bioscience 39(6):378–386

    Article  Google Scholar 

  • Adler RW (2015) US Environmental Protection Agency’s new waters of the United States Rule: connecting law and science. Freshw Sci 34:1595–1600. https://doi.org/10.1086/684002

    Article  Google Scholar 

  • Alexander LC (2015) Science at the boundaries: scientific support for the Clean Water Rule. Freshw Sci 34:1588–1594. https://doi.org/10.1086/684076

    Article  Google Scholar 

  • Alexander RB, Smith RA, Schwarz GE (2000) Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403:758–761

    Article  Google Scholar 

  • Alexander RB, Boyer EW, Smith RA, Schwarz GE, Moore RB (2007) The role of headwater streams in downstream water quality. J Am Water Resour Assoc 43(1):41–59

    Article  Google Scholar 

  • Alexander RB, Böhlke JK, Boyer EW, David MB, Harvey JW, Mulholland PJ, Seitzinger SP, Tobias CR, Tonitto C, Wollheim WM (2009) Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 93:91–116. https://doi.org/10.1007/s10533-008-9274-8

    Article  Google Scholar 

  • Basu NB, Destouni G, Jawitz JW, Thompson SE, Loukinova NV, Darracq A, Zanardo S, Yaeger M, Sivapalan M, Rinaldo A, Rao PSC (2010) Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophys Res Lett 37:L23404. https://doi.org/10.1029/2010GL045168

    Article  Google Scholar 

  • Bernal S, Sabater F (2012) Changes in stream discharge and solute dynamics between hillslope and valley-bottom intermittent streams. Hydrol Earth Syst Sci 16:1595–1605

    Article  Google Scholar 

  • Bernal S, von Schiller D, Sabater F, Martí E (2013) Hydrological extremes modulate nutrient dynamics in Mediterranean climate streams across different spatial scales. Hydrobiologia 719:31–42

    Article  Google Scholar 

  • Bishop K, Buffam I, Erlandsson M, Fölster J, Laudon H, Seibert J, Temnerud J (2008) Aqua Incognita: the unknown headwaters. Hydrol Process 22:1239–1242

    Article  Google Scholar 

  • Botter G, Bertuzzo E, Bellin A, Rinaldo A (2005) On the Lagrangian formulations of reactive solute transport in the hydrologic response. Water Resour Res 41:W04008. https://doi.org/10.1029/2004WR003544

    Article  Google Scholar 

  • Boyer EW, Alexander RB, Parton WJ, Li CS, Butterbach-Bahl K, Donner SD, Skaggs RW, Del Gross SJ (2006) Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecol Appl 16(6):2123–2142

    Article  Google Scholar 

  • Cheng N (1997) Simplified settling velocity formula for sediment particles. J Hydraul Eng 123:149–152

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  Google Scholar 

  • Czuba JA, Straub TD, Curran CA, Landers MN, Domanski MM (2015) Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples. Water Resour Res 51:320–340. https://doi.org/10.1002/2014WR015697

    Article  Google Scholar 

  • Czuba JA, Hansen AT, Foufoula-Georgiou E, Finlay JC (2018) Contextualizing wetlands within a river network to assess nitrate removal and inform watershed management. Water Resour Res 54(2):1312–1337. https://doi.org/10.1002/2017WR021859

    Article  Google Scholar 

  • Dhillon GS, Inamdar S (2014) Storm event patterns of particulate organic carbon (POC) for large storms and differences with dissolved organic carbon (DOC). Biogeochemistry 118:61–81. https://doi.org/10.1007/s10533-013-9905-6

    Article  Google Scholar 

  • Dodds WK, Lopez AJ, Bowden WB, Gregory S, Grimm NB, Hamilton SK, Hershey AE, Marti E, McDowell WH, Meyer JL, Morrall D, Mulholland PJ, Peterson BJ, Tank JL, Valett HM, Webster JR, Wollheim WM (2002) N uptake as a function of concentration in streams. J N Am Benthol Soc 21:206–220

    Article  Google Scholar 

  • Doyle MW (2005) Incorporating hydrologic variability into nutrient spiraling. J Geophys Res 110:GO1003. https://doi.org/10.1029/2005jg000015

    Article  Google Scholar 

  • Drummond J, Davies-Colley RJ, Stott R, Sukais J, Nagels J, Sharp A, Packman A (2015) Microbial transport, retention, and inactivation in streams: a combined experimental and stochastic modeling approach. Environ Sci Technol 49:7825–7833

    Article  Google Scholar 

  • Ensign SH, Doyle MW (2006) Nutrient spiraling in streams and river networks. J Geophys Res 111:G04009. https://doi.org/10.1029/2005JG000114

    Article  Google Scholar 

  • Essington TE, Carpenter SR (2001) Nutrient cycling in lakes and streams: insight from a comparative analysis. Ecosystems 3:131–143

    Article  Google Scholar 

  • Evans C, Davies TD (1998) Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resour Res 34:129–137

    Article  Google Scholar 

  • Ferguson R, Church M (2004) A simple universal equation for grain settling velocity. J Sediment Res 74:933–937

    Article  Google Scholar 

  • Fisher SG, Gray LJ, Grimm NB, Busch DE (1982) Temporal succession in a desert stream ecosystem following flash flooding. Ecol Monogr 52:93–110

    Article  Google Scholar 

  • Gardner JR, Doyle MW (2018) Sediment–water surface area along rivers: water column versus benthic. Ecosystems. https://doi.org/10.1007/s10021-018-0236-2

    Article  Google Scholar 

  • Godsey SE, Kirchner JW, Clow DW (2009) Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process 23(13):1844–1864

    Article  Google Scholar 

  • Gu C, Hornberger GM, Mills A, Herman JS, Flewelling S (2007) Nitrate reduction in streambed sediments: effects of flow and biogeochemical kinetics. Water Resour Res 43:W12413

    Article  Google Scholar 

  • Hall RO, Baker MA, Arp CD, Koch BJ (2009a) Hydrologic control of nitrogen removal, storage and export in a mountain stream. Limnol Oceanogr 54:2128–2142. https://doi.org/10.4319/lo.2009.54.6.2128

    Article  Google Scholar 

  • Hall RO, Tank JL, Sobota DJ, Mulholland PJ, O’Brien JM, Dodds WK, Webster JR, Valett HM, Poole GC, Peterson BJ, Meyer JL, McDowell WH, Johnson SL, Hamilton SK, Grimm NB, Gregory SV, Dahm CN, Cooper LW, Ashkenas LR, Thomas SM, Sheibley RW, Potter JD, Niederlehner BR, Johnson LT, Helton AM, Crenshaw CM, Burgin AJ, Bernot MJ, Beaulieu JJ, Arango CP (2009b) Nitrate removal in stream ecosystems measured by (15)N addition experiments: total uptake. Limnol Oceanogr 54(3):653–665

    Article  Google Scholar 

  • Hansen AT, Dolph CL, Foufoula-Georgiou E, Finlay JC (2018) Contribution of wetlands to nitrate removal at the watershed scale. Nat Geosci 11:127–132. https://doi.org/10.1038/s41561-017-0056-6

    Article  Google Scholar 

  • Helton AM, Poole GC, Meyer JL et al (2011) Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems. Front Ecol Environ 9(229–238):229–238. https://doi.org/10.1890/080211

    Article  Google Scholar 

  • Helton AM, Ardon M, Bernhardt ES (2015) Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns. Ecol Lett 18:1049–1056

    Article  Google Scholar 

  • Helton AM, Hall RO, Bertuzzo E (2017) How network structure can affect nitrogen removal by streams. Freshw Biol. https://doi.org/10.1111/fwb.12990

    Article  Google Scholar 

  • Hensley RT, McLaughlin DL, Cohen MJ, Decker PH (2017) Stream phosphorus dynamics of minimally impacted coastal plain watersheds. Hydrol Process 31(8):1636–1649

    Article  Google Scholar 

  • Hu Y, Lu YH, Liu C, Shang P, Liu J, Zheng C (2017) Sources and dynamics of dissolved inorganic carbon, nitrogen, and phosphorous in a large agricultural river basin in arid northwestern China. Water 9(6):415. https://doi.org/10.3390/w9060415

    Article  Google Scholar 

  • Hunt CW, Snyder L, Salisbury JE et al (2017) SIPCO2: a simple, inexpensive surface water pCO2 sensor. Limnol Oceanogr Methods 15:291–301. https://doi.org/10.1002/lom3.10157

    Article  Google Scholar 

  • Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403(6769):524–527

    Article  Google Scholar 

  • Knighton D (1998) Fluvial forms and processes: a new perspective. Oxford University Press, New York, p 383

    Google Scholar 

  • Koenig LE, Song C, Wollheim WM et al (2017) Nitrification increases nitrogen export from a tropical river network. Freshw Sci 36:698–712. https://doi.org/10.1086/694906

    Article  Google Scholar 

  • Koenig LE, Shattuck MD, Snyder LE, Potter JD, McDowell WH (2018) Deconstructing the effects of flow on DOC, nitrate, and major ion interactions using a high-frequency aquatic sensor network. Water Resour Res 53(12):10655–10673

    Article  Google Scholar 

  • Leopold LB, Maddock T Jr (1953) The hydraulic geometry of stream channels and some physiographic implications. Geol Surv Prof Pap 252:1–56

    Google Scholar 

  • Lovett G, Goodale C (2011) A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 14:615–631

    Article  Google Scholar 

  • Marcé R, von Schiller D, Aguilera R, Martí E, Bernal S (2018) Contribution of hydrologic opportunity and biogeochemical reactivity to the variability of nutrient retention in river networks. Glob Biogeochem Cycles. https://doi.org/10.1002/2017GB005677

    Article  Google Scholar 

  • Miller MP, Tesoriero AJ, Capel PD, Pellerin BA, Hyer KE, Burns DA (2016) Quantifying watershed-scale groundwater loading and in- stream fate of nitrate using high-frequency water quality data. Water Resour Res 52:330–347. https://doi.org/10.1002/2015WR017753

    Article  Google Scholar 

  • Mineau MM, Wollheim WM, Stewart RJ (2015) An index to characterize the spatial distribution of land use within watersheds and implications for river network nutrient removal and export. Geophys Res Lett 42:6688–6695. https://doi.org/10.1002/2015GL064965

    Article  Google Scholar 

  • Mineau MM, Wollheim WM, Buffam I, Findlay S, Hall R, Hotchkiss E, Koenig L, McDowell W, Parr T (2016) Dissolved organic carbon uptake in streams: a review and assessment of reach-scale measurements. J Geophys Res 121:2019–2029. https://doi.org/10.1002/2015JG003204

    Article  Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC, Hall RO, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Findlay SE, Gregory SV, Grimm NB, Johnson SL, McDowell WH, Meyer JL, Valett HM, Webster JR, Arango CP, Beaulieu JJ, Bernot MJ, Burgin AJ, Crenshaw CL, Johnson LT, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–205. https://doi.org/10.1038/nature06686

    Article  Google Scholar 

  • Newbold JD, Elwood JW, O’Neill RV, Van Winkle W (1981) Measuring nutrient spiralling in streams. Can J Fish Aquat Sci 38:860–863

    Article  Google Scholar 

  • O’Brien JM, Dodds WK, Wilson KC, Murdock JN, Eichmiller J (2007) The saturation of N cycling in Central Plains streams: 15 N experiments across a broad gradient of nitrate concentrations. Biogeochemistry 84:31–49

    Article  Google Scholar 

  • Park JH, Nayna OK, Begum MS, Chea E, Hartmann J, Keil RG, Kumar S, Lu X, Ran L, Richey JE, Sarma VSS, Tareq S, Xuan DT, Yu R (2018) Reviews and syntheses: anthropogenic perturbations to carbon fluxes in Asian river systems: concepts, emerging trends, and research challenges. Biogeosciences. https://doi.org/10.5194/bg-2017-549

    Article  Google Scholar 

  • Pellerin BA, Stauffer BA, Young DA, Sullivan DJ, Bricker SB, Walbridge MR, Clyde GR, Shaw DM (2016) Emerging tools for continuous nutrient monitoring networks: sensors advancing science and water resources protection. JAWRA. https://doi.org/10.1111/1752-1688.12386

    Article  Google Scholar 

  • Peterson BJ, Wollheim WM, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Marti E, Bowden WB, Valett HM, Hershey AE, McDowell WH, Dodds WK, Hamilton SK, Gregory S, Morrall DD (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90. https://doi.org/10.1126/science.1056874

    Article  Google Scholar 

  • Raymond PA, Saiers JE (2010) Event controlled DOC export from forested watersheds. Biogeochemistry 100:197–209. https://doi.org/10.1007/s10533-010-9416-7

    Article  Google Scholar 

  • Raymond PA, Zappa C, Butman D, Bott TL, Potter J, Mulholland PJ, Laursen A, McDowell WH, Newbold JD (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr 2:41–53. https://doi.org/10.1215/21573689-21597669

    Article  Google Scholar 

  • Raymond PA, Saiers J, Sobzak WV (2016) Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97:5–16

    Article  Google Scholar 

  • Rinaldo A, Botter G, Bertuzzo E, Uccelli A, Settin T, Marani M (2006) Transport at basin scale: 1. Theoretical framework. Hydrol Earth Syst Sci 10:19–29

    Article  Google Scholar 

  • Rode M, Wade AJ, Cohen MJ, Hensley RT, Bowes MJ, Kirchner JW, Arhonditsis GB, Jordan P, Kronvang B, Halliday SJ, Skeffington RA, Rozemeijer JC, Aubert AH, Rinke K, Jomaa S (2016) Sensors in the stream: the high-frequency wave of the present. Environ Sci Technol 50:10297–10307. https://doi.org/10.1021/acsest6b02155

    Article  Google Scholar 

  • Rüegg J, Dodds WK, Daniels MD et al (2016) Baseflow physical characteristics differ at multiple spatial scales in stream networks across diverse biomes. Landsc Ecol 31:119–136. https://doi.org/10.1007/s10980-015-0289-y

    Article  Google Scholar 

  • Sabater S, Timoner X, Borrego C, Acuña V (2016) Stream biofilm responses to flow intermittency: from cells to ecosystems. Front Environ Sci 4:14. https://doi.org/10.3389/fenvs.2016.00014

    Article  Google Scholar 

  • Samal N, Wollheim WM, Zuidema S, Stewart RJ, Mineau MM, Huang T, Wake C, Gardner K, Borsuk M, Mavrommati G, Lutz D, Zhou Z, Glidden S, Huber M (2017) Projections of coupled terrestrial and aquatic ecosystem change relevant to ecosystem service valuation at regional scales. Ecol Soc 22:18. https://doi.org/10.5751/ES-09662-220418

    Article  Google Scholar 

  • Schlesinger WH, Cole J, Finzi A, Holland EA (2011) Introduction to coupled biogeochemical cycles. Front Ecol Environ 9:5–8. https://doi.org/10.1890/090235

    Article  Google Scholar 

  • Stewart RJ, Wollheim WM, Gooseff M, Briggs MA, Jacobs JM, Peterson BJ, Hopkinson CS (2011) Separation of river network scale nitrogen removal among main channel and two transient storage compartments. Water Resour Res 47:W00J10. https://doi.org/10.1029/2010WR009896

    Article  Google Scholar 

  • Stewart RJ, Wollheim WM, Miara A, Vorosmarty CJ, Fekete B, Lammers R, Rosenzweig B (2013) Horizontal cooling towers: riverine ecosystem services and the fate of thermoelectric heat in the contemporary Northeast. Environ Res Lett 8:025010

    Article  Google Scholar 

  • Stream Solute Workshop (1990) Concepts and methods for assessing solute dynamics in stream ecosystems. J N Am Benthol Soc 9(2):95–119

    Article  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Baker MA, Hall RO (2008) Are rivers just big streams? A pulse method to quantifying nitrogen demand in a large river. Ecology 89:2935–2945

    Article  Google Scholar 

  • Thompson SE, Basu NB, Lascurain J et al (2011) Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resour Res 47:W00j05. https://doi.org/10.1029/2010wr009605

    Article  Google Scholar 

  • Uehlinger U (2006) Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a floodprone river during a 15-year period. Freshw Biol 51:938–950. https://doi.org/10.1111/j.1365-2427.2006.01551.x

    Article  Google Scholar 

  • Walling DE (1983) The sediment delivery problem. J Hydrol 65:209–237

    Article  Google Scholar 

  • Webster JR, Patten BC (1979) Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol Monogr 49(1):51–72

    Article  Google Scholar 

  • Wollheim WM (2016) From headwaters to rivers to river networks: scaling in stream ecology. In: Jones JB, Stanley EH (eds) Stream ecosystems in a changing environment. Elsevier, Amsterdam, pp 349–388

    Chapter  Google Scholar 

  • Wollheim WM, Vorosmarty CJ, Peterson BJ, Seitzinger SP, Hopkinson CS (2006) Relationship between river size and nutrient removal. Geophys Res Lett 33(6):L06410. https://doi.org/10.1029/2006GL025845

    Article  Google Scholar 

  • Wollheim WM, Peterson BJ, Vorosmarty CJ, Hopkinson CH, Thomas SA (2008) Dynamics of N removal over annual time scales in a suburban river network. J Geophys Res. https://doi.org/10.1029/2007JG000660

    Article  Google Scholar 

  • Wollheim WM, Stewart R, Aiken GR, Butler KD, Morse N, Salisbury J (2015) Removal of terrestrial dissolved organic carbon in aquatic ecosystems of a temperate river network. Geophys Res Lett 42:6671–6679. https://doi.org/10.1002/2015GL064647

    Article  Google Scholar 

  • Wollheim WM, Mulukutla GK, Cook C, Carey RO (2017) Aquatic nitrate retention at river network scales across flow conditions determined using nested in situ sensors. Water Resour Res. https://doi.org/10.1002/2017WR020644

    Article  Google Scholar 

  • Wymore A, Potter J, Rodriguez-Cardona B, McDowell W (2018) Using in situ optical sensors to understand the biogeochemistry of dissolved organic matter across a stream network. Water Resour Res 54:2949–2958. https://doi.org/10.1002/2017WR022168

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a product of the AGU Chapman Conference on Extreme Climate Events held in San Juan Puerto Rico in January 2017. We would like to thank the USDA (award # 2016-67019-25280), NSF-EPSCoR (#1641157), USGS, National CZO office, and the US Forest Service IITF for funding this AGU Chapman conference on Extreme Climate and providing travel funds to the attendees. This research was also supported by National Science Foundation (NSF) Macrosystem Biology (EF-1065286), NSF EPSCoR (EPS-1101245), and NSF LTER to Plum Island Ecosystem (OCE-1238212 and 1637630). Partial funding was provided by the New Hampshire Agricultural Experiment Station, USDA National Institute of Food and Agriculture Hatch Project NH00609, and is Scientific Contribution #2743. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Wollheim.

Additional information

Responsible Editor: Chris D. Evans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wollheim, W.M., Bernal, S., Burns, D.A. et al. River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks. Biogeochemistry 141, 503–521 (2018). https://doi.org/10.1007/s10533-018-0488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-018-0488-0

Keywords

Navigation