Skip to main content

Advertisement

Log in

Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

An emergent property of exopolysaccharides (EPS) produced by marine bacteria is their net negative charge, predominantly conferred by their high uronic acids content. Here, we investigated the EPS produced by an algal-associated marine bacterium, Halomonas sp. strain TG39, for its capacity to sequester trace metals and mediate their bioavailability to eukaryotic phytoplankton. Metal analysis of the purified EPS revealed that it contained high levels of K, Ca, Mg and several essential trace metals, including Zn, Cu, Fe and the metalloid Si. Desorption experiments with marine sediment showed that the EPS possessed a specific binding capacity for Ca, Si, Fe, Mn, Mg and Al. Depending on the ionic conditions, Fe was the third or fourth most highly-adsorbed metal out of 27 elements analyzed. Experiments employing Fe-limited synthetic ocean seawater showed that growth of the marine diatom Thalassiosira weissflogii (axenic strain) was enhanced when incubated in the presence of either purified EPS or EPS that had been pre-exposed to marine sediment, compared to non-EPS amended controls. This growth enhancement was attributed to the EPS binding and increasing the bioavailability of key trace metal elements, such as Fe(III). Since the bacterium used in this study was originally isolated from a marine micro-alga, this work highlights the possibility that bacterial associates of eukaryotic algae could be influencing the bioavailability of Fe(III) to phytoplankton via their production of polyanionic EPS. More widely, this work reinforces the potential importance of marine bacterial EPS in trace metal biogeochemical cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amin SA, Green DH, Hart MC, Kupper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Nat Acad Sci 106:17071–17076

    Article  PubMed  CAS  Google Scholar 

  • Amin SA, Green DH, Waheeb DA, Gärdes A, Carrano CJ (2012) Iron transport in the genus Marinobacter. Biometals 25:135–147

    Article  PubMed  CAS  Google Scholar 

  • Arias S, del Moral A, Ferrer MR, Tallon R, Quesada E, Bejar V (2003) Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326

    Article  PubMed  CAS  Google Scholar 

  • Beech IB, Cheung CWS (1995) Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. Int Biodeter Biodegrad. 35:59–72

    Article  CAS  Google Scholar 

  • Bejar V, Llamas I, Calvo C, Quesada E (1998) Characterization of exopolysaccharides produced by 19 halophilic strains of the species Halomonas eurihalina. J Biotechnol 61:135–141

    Article  CAS  Google Scholar 

  • Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88:45–53

    CAS  Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substances (EPS): a carrier of heavy metals in the marine food-chain. Environ Int 32:191–198

    Article  PubMed  CAS  Google Scholar 

  • Biller DV, Bruland KW (2012) Analysis of Mn, Fe, Co., Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS). Mar Chem 130–131:12–20

    Article  Google Scholar 

  • Blackburn SI, Hallegraeff GM, Bolch CJ (1989) Vegetative reproduction and sexual life cycle of the toxic dinoflagellate Gymnodinium catenatum from Tasmania. Australia J Phycol 25:577–590

    Article  Google Scholar 

  • Boyd PW et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617

    Article  PubMed  CAS  Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1983) Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol Oceanogr 28:1182–1198

    Article  CAS  Google Scholar 

  • Brzezinski MA, Dickson ML, Nelson DM, Sambrotto R (2003) Ratios of Si, C and N uptake by microplankton in the southern ocean. Deep-Sea Res Pt II 50:619–633

    Article  CAS  Google Scholar 

  • Calvo C, Martinez-Checa F, Mota A, Bejar V, Quesada E (1998) Effect of cations, pH and sulfate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. J Ind Microbiol Biotechnol 20:205–209

    Article  CAS  Google Scholar 

  • Calvo C, Martinez-Checa F, Toledo FL, Porcel J, Quesada E (2002) Characteristics of bioemulsifiers synthesized in crude oil media by Halomonas eurihalina and their effectiveness in the isolation of bacteria able to grow in the presence of hydrocarbons. Appl Microbiol Biotechnol 60:347–351

    Article  PubMed  CAS  Google Scholar 

  • Chin W-C, Orellana MV, Verdugo P (1998) Formation of microgels by spontaneous assembly of dissolved marine polymers. Nature 391:568–572

    Article  CAS  Google Scholar 

  • Coale KH (1991) Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific. Limnol Oceanogr 36:1851–1864

    Article  CAS  Google Scholar 

  • Coale KH, Wang X, Tanner SJ, Johnson KS (2003) Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep-Sea Res II 50:635–653

    Article  CAS  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. In: Barnes M (ed) Oceanography marine biology annual review. Aberdeen University Press, Aberdeen, pp 73–153

    Google Scholar 

  • Ford TE, Maki JS, Mitchell R (1987) The Role of Metal-binding Bacterial Exopolymers in Corrosion Processes. Corrosion/87, Paper No. 380, National Association of Corrosion Engineers, Houston

  • Ford T, Sacco E, Black J, Kelley T, Goodacre RC, Berkeley RCW, Mitchell R (1991) Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry. Appl Environ Microbiol 57:1595–1601

    PubMed  CAS  Google Scholar 

  • Gerlach A (1981) Marine pollution: diagnosis and therapy. Springer, New York

    Book  Google Scholar 

  • Gutierrez T, Mulloy B, Black K, Green DH (2007) Glycoprotein emulsifiers from two marine Halomonas species: chemical and physical characterization. J Appl Microbiol 103:1716–1727

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez T, Shimmield T, Haidon C, Black K, Green DH (2008) Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by a Pseudoalteromonas sp. strain TG12. Appl Environ Microbiol 74:4867–4876

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez T, Morris G, Green DH (2009) Yield and physicochemical properties of EPS from Halomonas sp. strain TG39 identifies a role for protein and anionic residues (sulphate and carboxyl) in emulsification of n-hexadecane. Biotechnol Bioeng 103:207–216

    Article  PubMed  CAS  Google Scholar 

  • Gyurcsik B, Nagy L (2000) Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coord Chem Rev 203:81–149

    Article  CAS  Google Scholar 

  • Hansell DA, Carlson CA (1998) Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395:263–268

    Article  CAS  Google Scholar 

  • Hassler CS, Schoemann V (2009) Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean. Biogeosci 6:2281–2296

    Article  CAS  Google Scholar 

  • Hassler CS, Alasonati E, Mancuso Nichols CA, Slaveykova VI (2011a) Exopolysaccharides produced by bacteria isolated from the pelagic Southern Ocean—role of Fe binding, chemical reactivity, and bioavailability. Mar Chem 123:88–98

    Article  CAS  Google Scholar 

  • Hassler CS, Schoemann V, Mancuso Nichols C, Butler ECV, Boyd PW (2011b) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Nat Acad Sci 108:1076–1081

    Article  PubMed  CAS  Google Scholar 

  • Howe JA, Wilson CR, Shimmield TM, Diaz RJ, Carpenter LW (2007) Recent deep-water sedimentation, trace metal and radioisotope geochemistry across the Southern Ocean and Northern Weddell Sea, Antarctica. Deep-Sea Res II 54:1652–1681

    Article  Google Scholar 

  • Iyer A, Mody K, Bhavanath J (2005) Biosorption of heavy metals by a marine bacterium. Mar Poll Bull 50:340–343

    Article  CAS  Google Scholar 

  • Kennedy AFD, Sutherland IW (1987) Analysis of bacterial exopolysaccharides. Biotechnol Appl Biochem 9:12–19

    PubMed  CAS  Google Scholar 

  • Levy JL, Stauber JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Total Environ 387:141–154

    Article  PubMed  CAS  Google Scholar 

  • Loaec M, Olier R, Guezennec J (1997) Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Res 31:1171–1179

    Article  CAS  Google Scholar 

  • Loaec M, Olier R, Guezennec J (1998) Chelating properties of bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohydr Polymers 35:65–70

    Article  CAS  Google Scholar 

  • Lores E, Pennock J (1998) The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter. Chemosphere 37:861–874

    Article  CAS  Google Scholar 

  • Mancuso Nichols C, Garon S, Bowman JP, Raguenes G, Guesennec J (2004) Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol 96:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Martin JH et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific-Ocean. Nature 371:123–129

    Article  CAS  Google Scholar 

  • Morel FMM, Hudson RJM, Price NM (1991) Limitation of productivity by trace metals in the sea. Limnol Oceanogr 36:1742–1755

    Article  CAS  Google Scholar 

  • Peers G, Quesnel S-A, Price NM (2005) Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol Oceanogr 50:1149–1158

    Article  CAS  Google Scholar 

  • Quesada E, Bejar V, Calvo C (1993) Exopolysaccharide production by Volcaniella eurihalina. Experientia 49:1037–1041

    Article  CAS  Google Scholar 

  • Ragueneau O, Tréguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, François R, Heinze C, Maier-Reimer E, Martin-Jézéquel V, Nelson DM, Quéguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26:317–365

    Article  Google Scholar 

  • Santschi PH, Guo L, Means JC, Ravichandran M (1998) Natural organic matter binding of trace metal and trace organic contaminants in estuaries. In: Bianchi TS, Pennock JR, Twilley R (eds) Biogeochemistry of Gulf of Mexico Estuaries. Wiley, New York, pp 347–380

    Google Scholar 

  • Santschi PH, Hung C-C, Schultz G, Alvarado-Quiroz N, Guo L, Pinkney J, Walsh I (2003) Control of acid polysaccharide production and 234Th and POC export fluxes by marine organisms. Geophys Res Lett 30:1044

    Article  Google Scholar 

  • Scharek R, Vanleeuwe MA, Debaar HJW (1997) Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep-Sea Res Pt II 44:209–227

    Article  CAS  Google Scholar 

  • Schlekat CE, Decho AW, Chandler GT (1998) Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environ Toxicol Chem 17:1867–1874

    Article  CAS  Google Scholar 

  • Schoemann V, Wollast R, Chou L, Lancelot C (2001) Effects of photosynthesis on the accumulation of Mn and Fe by Phaeocystis colonies. Limnol Oceanogr 46:1065–1076

    Article  Google Scholar 

  • Sreeram KJ, Yamini Srivastava H, Nair BU (2004) Studies on the nature of interaction of iron(III) with alginates. Biochim Biophys Acta 1670:121–125

    Article  PubMed  CAS  Google Scholar 

  • Sunda WG, Price NM, Morel FMM (2005) Trace metal ion buffers and their use in culture studies, Chap 4. In: Anderson RA (ed) Algal culturing techniques. Acad. Press/Elsevier, Amsterdam, pp 35–63

    Google Scholar 

  • Swan SC, Gordon JDM, Morales-Nin B, Shimmield T, Sawyer T, Geffen AJ (2003) Otolith microchemistry of Nezumia aequalis (Pisces: Macrouridae) from widely different habitats in the Atlantic and Mediterranean. J Mar Biol Ass UK 83:883–886

    Article  Google Scholar 

  • Van Boekel WHM (1992) Phaeocystis colony mucus components and the importance of calcium ions for colony stability. Mar Ecol Prog Ser 87:301–305

    Article  Google Scholar 

  • Verdugo P (1994) Polymer gel phase transition in condensation-decondensation of secretory products. Adv Polymer Sci 110:145–156

    Article  Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would especially like to thank Cheryl Haidon, Terrie Sawyer and Bryony Carr for valuable assistance with the metals analysis, and Adrian Marchetti for critically reviewing the manuscript. This work was supported by grants from the Natural Environment Research Council (NE/E523272/1 and Oceans2025) and a Marie Curie International Outgoing Fellowship (PIOF-GA-2008-220129) within the 7th European Community Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tony Gutierrez or David H. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, T., Biller, D.V., Shimmield, T. et al. Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 25, 1185–1194 (2012). https://doi.org/10.1007/s10534-012-9581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9581-3

Keywords

Navigation