Skip to main content
Log in

Purification and Characterization of an Intracellular β-Glucosidase from the Methylotrophic Yeast Pichia pastoris

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Pichia pastoris β-glucosidase was purified to apparent homogeneity by salting out with ammonium sulfate, gel filtration, and ion-exchange chromatography with Q-Sepharose and CM-Sepharose. The enzyme is a tetramer (275 kD) made up of four identical subunits (70 kD). The pH optimum is 7.3, and it is fairly stable in the pH range 5.5–9.5. The temperature optimum is 40°C. The purified β-glucosidase is effectively active on p-/o-nitrophenyl-β-D-glucopyranosides (p-/o-NPG) and 4-methylumbelliferyl-β-D-glucopyranoside (4-MUG) with Km values of 0.12, 0.22, and 0.096 mM and Vmax values of 10.0, 11.7, and 6.2 µmol/min per mg protein, respectively. It also exhibits different levels of activity against p-nitrophenyl-1-thio-β-D-glucopyranoside, cellobiose, gentiobiose, amygdalin, prunasin, salicin, and linamarin. The enzyme is competitively inhibited by gluconolactone, p-/o-nitrophenyl-β-D-fucopyranosides (p-/o-NPF), and glucose against p-NPG as substrate. o-NPF is the most effective inhibitor of the enzyme activity with Ki value of 0.41 mM. The enzyme is more tolerant to glucose inhibition with Ki value of 7.2 mM for p-NPG. Pichia pastoris has been employed as a host for the functional expression of heterologous β-glucosidases and the risk of high background β-glucosidase activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Smith, A. R., and van Staden, J. (1978) J. Exp. Bot., 29, 1067–1073.

    CAS  Google Scholar 

  2. Conn, E. E. (1981) in Biochemistry of Plants (Conn, E. E., ed.) Vol. 7, Academic Press, New York, pp. 479–500.

    Google Scholar 

  3. Poulton, J. E. (1990) Plant Physiol., 94, 401–405.

    Article  CAS  PubMed  Google Scholar 

  4. Niemeyer, H. M. (1988) Phytochem., 27, 3349–3358.

    Article  CAS  Google Scholar 

  5. Dharmawardhana, D. P., Ellis, B. E., and Carlson, J. E. (1995) Plant Physiol., 107, 331–339.

    Article  PubMed  CAS  Google Scholar 

  6. Brozobohaty, B., Moore, I., Kristofferson, P., Bako, L., Campos, N., Schell, J., and Palme, K. (1993) Science, 262, 1051–1054.

    Google Scholar 

  7. Leah, R., Kigel, J., Swendsen, I., and Mundy, J. (1995) J. Biol. Chem., 270, 15789–15797.

    PubMed  CAS  Google Scholar 

  8. Gunata, Z., Dugelay, I., Sapis, J. C., Baumes, R., and Bayonove, C. (1993) in Progress in Flavor Precursor Studies (Schreirer, P., and Winterhalter, P., eds.) Allured Publishers, Carol Stream, IL, pp. 219–234.

    Google Scholar 

  9. Woodward, J., and Wiseman, A. (1982) Enzyme Microb. Technol., 4, 73–79.

    CAS  Google Scholar 

  10. Bisaria, V. S., and Mishra, S. (1989) CRC Crit. Rev. Biotechnol., 5, 61–103.

    Google Scholar 

  11. Tomme, P., Warren, R. A. J., and Gilkes, N. R. (1995) Adv. Microbiol. Physiol., 37, 1–81.

    CAS  Google Scholar 

  12. Bothast, R. J., and Saha, B. C. (1997) Adv. Appl. Microbiol., 44, 261–286.

    CAS  Google Scholar 

  13. Cho, K. M., Yoo, Y. J., and Kang, H. S. (1999) Enzyme Microb. Technol., 25, 23–30.

    Article  CAS  Google Scholar 

  14. Berrin, J. G., McLauchlan, W. R., Needs, P., Williamson, G., Pugserver, A., Kroon, P. A., and Juge, N. (2002) Eur. J. Biochem., 269, 249–258.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou, J., Hartmann, S., Shepherd, B. K., and Poulton, J. E. (2002) Plant Physiol., 129, 1252–1264.

    PubMed  CAS  Google Scholar 

  16. Kawai, R., Yoshida, M., Tani, T., Igarashi, K., Ohira, T., Nagasawa, H., and Samejima, M. (2003) Biosci. Biotechnol. Biochem., 67, 1–7.

    PubMed  CAS  Google Scholar 

  17. Bradford, M. M. (1976) Analyt. Biochem., 72, 248–254.

    PubMed  CAS  Google Scholar 

  18. Laemmli, U. K. (1970) Nature, 277, 680–685.

    Google Scholar 

  19. Machida, M., Othsuki, I., Fukui, S., and Yamashita, I. (1988) Appl. Environ. Microbiol., 54, 3147–3155.

    PubMed  CAS  Google Scholar 

  20. Wallecha, A., and Mishra, S. (2003) Biochim. Biophys. Acta, 1649, 74–84.

    PubMed  CAS  Google Scholar 

  21. Skory, C. D., and Freer, S. N. (1995) Appl. Environ. Microbiol., 61, 518–525.

    PubMed  CAS  Google Scholar 

  22. Pandey, M., and Mishra, S. (1997) Gene, 190, 45–51.

    Article  PubMed  CAS  Google Scholar 

  23. Gueguen, Y., Chemardin, P., and Arnaud, A. (2001) Appl. Biochem. Biotechnol., 95, 151–162.

    PubMed  CAS  Google Scholar 

  24. Gonde, P., Ratomahenina, R., Arnaud, A., and Galzy, P. (1985) Can. J. Biochem. Cell Biol., 63, 1160–1166.

    Article  CAS  Google Scholar 

  25. Saha, B. C., and Bothast, R. J. (1996) Biotechnol. Lett., 18, 155–158.

    Article  CAS  Google Scholar 

  26. Kohchi, C., Hayashi, M., and Nagair, S. (1985) Agric. Biol. Chem., 49, 779–784.

    CAS  Google Scholar 

  27. Saha, B. C., and Bothast, R. J. (1996) Appl. Environ. Microbiol., 62, 3165–3170.

    PubMed  CAS  Google Scholar 

  28. Belancic, A., Gunata, Z., Vallier, M. J., and Agosin, E. (2003) J. Agric. Food Chem., 51, 1453–1459.

    Article  PubMed  CAS  Google Scholar 

  29. Hernandez, L. F., Espinonasa, J. C., Fernandez-Gonzalez, M., and Briones, A. (2003) J. Food Microbiol., 80, 171–176.

    CAS  Google Scholar 

  30. Drider, D., Pommares, P., Chemardin, P., Arnaud, A., and Galzy, P. (1993) J. Appl. Bacteriol., 74, 473–479.

    PubMed  CAS  Google Scholar 

  31. Higgins, D. R., and Cregg, J. M. (1998) in Pichia Protocols, Methods in Molecular Biology (Higgins, D. R., and Cregg, J. M., eds.) Vol. 103, Humana Press, Totowa, New Jersey, pp. 1–15.

    Google Scholar 

  32. Cereghino, J. L., and Cregg, J. M. (2000) FEMS Microbiol. Rev., 24, 45–66.

    PubMed  CAS  Google Scholar 

  33. Xu, Z., Escamilla-Trevino, L. L., Zeng, L., Lalgondar, M., Bevan, D. R., Winkel, B. S. J., Mohamed, A., Cheng, C.-L., Shih, M.-C., Poulton, J. E., and Esen, A. (2004) Plant Mol. Biol., 55, 343–367.

    PubMed  CAS  Google Scholar 

  34. Thorlby, G., Fourrier, N., and Warren, G. (2004) Plant Cell, 16, 2192–2203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Turan.

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 12, 2005, pp. 1656–1663.

Original Russian Text Copyright © 2005 by Turan, Zheng.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-246, November 20, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turan, Y., Zheng, M. Purification and Characterization of an Intracellular β-Glucosidase from the Methylotrophic Yeast Pichia pastoris . Biochemistry (Moscow) 70, 1363–1368 (2005). https://doi.org/10.1007/s10541-005-0270-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0270-5

Key words

Navigation