Skip to main content
Log in

Hydrogel-based microsensors for wireless chemical monitoring

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We report fabrication and characterization of a new hydrogel-based microsensor for wireless chemical monitoring. The basic device structure is a high-sensitivity capacitive pressure sensor coupled to a stimuli-sensitive hydrogel that is confined between a stiff porous membrane and a thin glass diaphragm. As small molecules pass through the porous membrane, the hydrogel swells and deflects the diaphragm which is also the movable plate of the variable capacitor in an LC resonator. The resulting change in resonant frequency can be remotely detected by the phase-dip technique. Prior to hydrogel loading, the sensitivity of the pressure sensor to applied air pressure was measured to be 222kHz/kPa over the range of 41.9–51.1MHz. With a pH-sensitive hydrogel, the sensor displayed a sensitivity of 1.16MHz/pH for pH3.0–6.5, and a response time of 45 minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • O. Akar, T. Akin, K. Najafi, Sens. Actuators A 95, 29 (2001)

    Article  Google Scholar 

  • N.A. Alcantar, E.S. Aydil, J.N. Isrealachvili, J. Biomed. Materi. Res. 51, 343 (2000)

    Article  Google Scholar 

  • V.L. Alexeev et al., Anal. Chem. 75, 2316 (2003)

    Article  Google Scholar 

  • B. Amsden, Polym. Gels Netw. 6, 13 (1998)

    Article  Google Scholar 

  • A. Baldi, Y. Gu, P.E. Loftness, R.A. Siegel, B. Ziaie, Journal of Microelectromechanical Systems 12, 613 (2003)

    Article  Google Scholar 

  • A. Baldi, M. Lei, Y. Gu, R.A. Siegel, B. Ziaie, Sens. Actuators, B, Chem. 114, 9 (2006)

    Article  Google Scholar 

  • D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-H. Jo, Nature 404, 588 (2000)

    Article  Google Scholar 

  • S. Beeby, G. Ensell, M. Kraft, N. White, MEMS Mechanical Sensors (Artech House Inc., Norwood, 2004)

    Google Scholar 

  • X. Cao, S. Lai, L.J. Lee, Biomedical Microdevices 3, 109 (2001)

    Article  Google Scholar 

  • H.L. Chau, K.D. Wise, IEEE Trans. Electron. Devices, 34, 850 (1987)

    Article  Google Scholar 

  • J. Crank, The Mathematics of Diffusion (Cambridge University Press, Oxford, 1975)

    Google Scholar 

  • E.L. Cussler, Diffusion (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  • S.K. De, N.R. Aluru, B.B.J. Johnson, W.C. Crone, D.J. Beebe, J. Moore, Journal of Microelectromechanical Systems 9, 544 (2002)

    Article  Google Scholar 

  • J.P. Den Hartog, Advanced Strength of Materials (Dover Publishing, NY, 1987)

    Google Scholar 

  • L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang, Nature 442, 551 (2006)

    Article  Google Scholar 

  • S.R. Eisenberg, A.J. Grodzinsky, J. Biomech. Eng. 109, 79 (1987)

    Article  Google Scholar 

  • A. English, T. Tanaka, E.R. Edelman, J. Chem. Phys. 107, 1645 (1997)

    Article  Google Scholar 

  • I.A. Eugene, Electronic Materials Science (Wiley, Hoboken, 2005)

    Google Scholar 

  • B.A. Firestone, R.A. Siegel, J. Biomater. Sci. Polym. Ed. 43, 901 (1994)

    Google Scholar 

  • G. Gerlach, M. Guenther, J. Sorber, G. Suchanek, K.-F. Arndt, A. Richter, Sens. Actuators. B. 111–112, 555–561 (2005)

  • E.S. Gil, S.M. Hudson, Prog. Polym. Sci. 29, 1173–1222 (2004)

    Article  Google Scholar 

  • C.A. Grimes, D. Kouzoudis, K.G. Ong, R. Crump, Biomedical Microdevices 2, 51 (1999)

    Article  Google Scholar 

  • P.E. Grimshaw, J.H. Nussbaum, M.L. Yarmush, A.J. Grodzinsky, J. Chem. Phys. 93, 4462 (1990)

    Article  Google Scholar 

  • I.S. Han, M.H. Han, J. Kim, S. Lew, Y.J. Lee, F. Horkay, J.J. Magda, Biomacromolecules 3, 1271 (2002)

    Article  Google Scholar 

  • S. Kabilan et al., Biosens. Bioelectron. 20, 1602 (2005)

    Article  Google Scholar 

  • C.A. Kavanagh, Y.A. Rochev, W.M. Gallagher, K.A. Dawson, A.K. Keenan, Pharmacol. Ther. 102, 1 (2004)

    Article  Google Scholar 

  • J. Kopecek, Eur. J. Pharm. 20, 1 (2003)

    Article  Google Scholar 

  • M. Lei, A. Baldi, E. Nuxoll, R.A. Siegel, B. Ziaie, Diabetes Technol. Ther. 8, 112 (2006)

    Article  Google Scholar 

  • M. Lei, B. Ziaie, E. Nuxoll, K. Ivan, Z. Noszticzius, R.A. Siegel, J. Nanosci. Nanotech. 7, 780 (2007)

    Article  Google Scholar 

  • L. Masaro, X.X. Zhu, Prog. Polym. Sci 24, 731 (1999)

    Article  Google Scholar 

  • S. Mujumdar, Ph.D. Thesis. (University of Minnesota, 2007)

  • J.J. Nussbaum, A.J. Grodzinsky, J. Membr. Sci. 8, 193 (1981)

    Article  Google Scholar 

  • T. Pan, A. Baldi, E. Davies-Venn, R.F. Drayton, B. Ziaie, J. Micromech. Microeng. 15, 849 (2005)

    Article  Google Scholar 

  • E. Park, J. Yoon, E. Yoon, Jpn. J. Appl. Phys. 37, 7124 (1998)

    Article  Google Scholar 

  • J. Rička, T. Tanaka, Macromolecules 17, 2916 (1984)

    Article  Google Scholar 

  • A.D. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, Fresenius’ J. Anal. Chem. 366, 402 (1997)

    Google Scholar 

  • D. Shino, K. Kataoka, Y. Koyama, M. Yokoyama, T. Okano, Y. Sakurai, J. Intell. Mater. Syst. Struct. 5, 311 (1994)

    Article  Google Scholar 

  • R.A. Siegel, M. Falamarzian, B.A. Firestone, B.A. Moxley, J. Control. Release 8, 179 (1988)

    Article  Google Scholar 

  • Z.A. Strong, A.W. Wang, C.F. McConaghy, Biomedical Microdevices 4, 97 (2002)

    Article  Google Scholar 

  • T. Tanaka, D. Fillmore, J. Chem. Phys. 70, 1214 (1979)

    Article  Google Scholar 

  • T. Tomari, M. Doi, J. Phys. Soc. Jpn. 63, 2093 (1994)

    Article  Google Scholar 

  • B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the Nanofabrication Center (NFC) of the University of Minnesota for their assistance. Many thanks go to Tingrui Pan, Woohyek Choi, Hao Hou, Yuandong Gu, and Zhihua Li for their valuable suggestions. Funding for this project was provided by US Army Medical Research Acquisition Activity DA/DAMD17-02-1-0722 and by the National Institutes of Health, grant EB003215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Ziaie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, M., Baldi, A., Nuxoll, E. et al. Hydrogel-based microsensors for wireless chemical monitoring. Biomed Microdevices 11, 529–538 (2009). https://doi.org/10.1007/s10544-008-9168-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9168-5

Keywords

Navigation