Skip to main content
Log in

Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs)

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A complete electrochemical cell-on-a-chip that uses the MicroDisc Electrode Array (MDEA) working electrode (WE) design was evaluated for eventual intramuscular implantation for the continuous amperometric monitoring of glucose and lactate in an animal trauma model. The microfabricated ECC MDEA5037 comprises two discrete electrochemical cells-on-a-chip (ECCs), each with a reference, counter, and MDEA working electrode. Each MDEA comprises 37 microdiscs (diameter = 50 µm) arranged in a Hexagonal Closed Packed (HCP) arrangement with a center to center distance (d) of 100 µm. Cyclic Voltammetry (CV) and Electrical Impendence Spectroscopy (EIS) reveals that this device scales in its interfacial properties with a corresponding MDEA 050 device that comprises 5,184 microdiscs. Parallel development of miniaturized mixed-signal integrated electronics for wireless reprogramming, data acquisition and communication addresses the key issues involved in developing measurement electronics, AD/DA processing, power management and telemetry for implantable amperometric biosensors. A generalized electronics platform based on the Texas Instruments TI NC01101 chip has been developed that may be readily applied to many types of biotransducers with minor modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and by the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips. The authors acknowledge work to order contributions of Peter Hansen at Telesensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Guiseppi-Elie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdur Rahman, A.R., Justin, G. & Guiseppi-Elie, A. Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed Microdevices 11, 75–85 (2009). https://doi.org/10.1007/s10544-008-9211-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9211-6

Keywords

Navigation