Skip to main content
Log in

Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs)

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Our interest is in the development of engineered microdevices for continuous remote monitoring of intramuscular lactate, glucose, pH and temperature during post-traumatic hemorrhaging. Two important design considerations in the development of such devices for in vivo diagnostics are discussed; the utility of micro-disc electrode arrays (MDEAs) for electrochemical biosensing and the application of biomimetic, bioactive poly(HEMA)-based hydrogel composites for implant biocompatibility. A poly(HEMA)-based hydrogel membrane containing polyethylene glycol (PEG) was UV cross-linked with tetraethyleneglycol diacrylate following application to MDEAs (50 μm discs) and to 250 μm diameter gold electrodes within 8-well culture ware. Cyclic voltammetry (CV) of the MDEAs revealed a reduction in the apparent diffusion coefficient of ferrocenemonocarboxylic acid (FcCO2H), from 6.68 × 10−5 to 6.74 × 10−6 cm2/s for the uncoated and 6 μm thick hydrogel coated devices, respectively. Single frequency (4 kHz) temporal impedance measurements of the hydrogels in the 8-well culture ware showed a reversible 5% change in the absolute impedance of the hydrogels when exposed to a pH change between 6.1 to 7.2 and a 20% drop between pH 6.1 and 8.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdur Rub Abdur Rahman, Gusphyl Justin and Anthony Guiseppi-Elie “Towards an Implantable Biochip for Glucose and Lactate Monitoring using Micro-Disc Electrode Arrays (MDEAs)” “Biomedical Microdevices: BioMEMS and Biomedical NanoTechnology” (this journal)

  • S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility Biomaterials 26, 4767–4778 (2005). doi:10.1016/j.biomaterials.2005.01.031

    Article  Google Scholar 

  • A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (John Wiley and Sons, Inc., Hoboken, 2001)

  • U. Bhardwaj, R. Sura, F. Papadimitrakopoulos, D.J. Burgess, Controlling acute inflammation with fast releasing dexamethasone-PLGA microsphere/PVA hydrogel composites for implantable devices J. Diabetes Sci. Technol. 1, 8–17 (2007)

    Google Scholar 

  • R. Compton, A. Fisher, R.G. Wellington, P.J. Dobson, P.A. Leigh, Hydrodynamic voltammetry with microelectrodes. cannel microband electrodes: theory and experiment J. Phys. Chem 97, 10410–10415 (1993). doi:10.1021/j100142a024

    Article  Google Scholar 

  • T. Davies, R. Compton, The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory J. Electroanal. Chem 585, 63–82 (2005). doi:10.1016/j.jelechem.2005.07.022

    Article  Google Scholar 

  • T. Davies, S. Ward-Jones, C. Banks, J. del Campo, R. Mas, F.X. Munoz et al., The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: Fitting of experimental data J. Electroanal. Chem 585, 51–62 (2005). doi:10.1016/j.jelechem.2005.07.021

    Article  Google Scholar 

  • R.H. Farahi, R.H. Farahi, T.L. Ferrell, A. Guiseppi-Elie, P.A.H.P. Hansen, “Integrated electronics platforms for wireless implantable biosensors” presented at Life Science Systems and Applications Workshop, 2007. LISA 2007. IEEE/NIH, 2007

  • H.O. Finklea, D.A. Snider, J. Fedyk, E. Sabatani, Y. Gafni, I. Rubinstein, Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac impedance spectroscopy Langmuir 19, 3660–3667 (1993). doi:10.1021/la00036a050

    Article  Google Scholar 

  • M. Gerritsen, A. Kros, V. Sprakel, J. Lutterman, R. Nolte, J. Jansen, Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors Biomaterials 21, 71–78 (2000). doi:10.1016/S0142-9612(99)00136-2

    Article  Google Scholar 

  • R. Gifford, J. Kehoe, S. Barnes, B. Kornilayev, M. Alterman, G. Wilson, Protein interactions with subcutaneously implanted biosensors Biomaterials 27, 2587–2598 (2006). doi:10.1016/j.biomaterials.2005.11.033

    Article  Google Scholar 

  • O. Gonzalez-Garcia, C. Arino, J. Diaz-Cruz, M. Esteban, Chronoamperometric and voltammetric characterization of gold ultramicroelectrode arrays Electroanalysis 19, 429–435 (2007). doi:10.1002/elan.200603727

    Article  Google Scholar 

  • A. Guiseppi-Elie, S. Brahim, G. Slaughter, K. Ward, Design of a subcutaneous implantable biochip for monitoring of glucose and lactate IEEE Sens. J. 5, 345–355 (2005). doi:10.1109/JSEN.2005.846173

    Article  Google Scholar 

  • F.J. Holly, M.F. Refojo, Wettability of hydrogels I. Poly(2-hydroxyethyl methacrylate) J. Biomed. Mater. Res 9, 315–326 (1975). doi:10.1002/jbm.820090307

    Article  Google Scholar 

  • H.J. Lee, C. Beriet, R. Ferrigno, H. Girault, Cyclic voltammetry at a regular microdisc electrode array J. Electroanal. Chem 502, 138–145 (2001). doi:10.1016/S0022-0728(01)00343-6

    Article  Google Scholar 

  • M. Morita, M. Longmire, R.W. Murray, Solid-state voltammetry in a three electrode electrochemical cell-on-a-chip with a microlithographically defined microelectrode Anal. Chem 60, 2770–2775 (1988). doi:10.1021/ac00175a026

    Article  Google Scholar 

  • M. Morita, O. Niwa, T. Horiuchi, Interdigitated array microelectrodes as electrochemical sensors. Electrochim. Acta 42, 3177–3183 (1997). doi:10.1016/S0013-4686(97)00171-0

    Article  Google Scholar 

  • I. Moser, G. Jobst, G. Urban, Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate and glutamine Biosens. Bioelectron. 17, 297–302 (2002). doi:10.1016/S0956-5663(01)00298-6

    Article  Google Scholar 

  • F. Moussy, D. Harrison, D. O’Brien, R. Rajotte, Performance of subcutaneously implanted needle-type glucose sensors employing a novel trilayer coating Anal. Chem. 65, 2072–2077 (1993). doi:10.1021/ac00063a023

    Article  Google Scholar 

  • F. Moussy, D. Harrison, R. Rajotte, A miniaturized Nafion-based glucose sensor: in vivo evaluation in dogs Int. J. Artif. Organs 17, 88–94 (1994)

    Google Scholar 

  • L. Murphy, Biosensors and bioelectrochemistry Curr. Opin. Chem. Biol. 10, 177–184 (2006). doi:10.1016/j.cbpa.2006.02.023

    Article  Google Scholar 

  • R.S. Nicholson, I. Shain, Theory of stationary electrode polarography: Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems Anal. Chem 36, 706–723 (1964). doi:10.1021/ac60210a007

    Article  Google Scholar 

  • J. Pickup, D. Claremont, G. Shaw, Responses and calibration of amperometric glucose sensors implanted in the subcutaneous tissue of man Acta Diabetol. 30, 143–148 (1993). doi:10.1007/BF00572858

    Article  Google Scholar 

  • Y. Saito, Rev Polarog (Japan), vol. 15, pp. 177 (1968)

  • O. Schuvailo, O. Soldatkin, A. Lefebvre, R. Cespuglio, and A. Soldatkin, Highly selective microbiosensors for in vivo measurement of glucose, lactate and glutamate. Analytica Chimica Acta, vol. Epub 110-6, pp. 573–574, (2006)

  • A. Steinschaden, D. Adamovic, G. Jobst, R. Glatz, G. Urban, Miniaturised thin film conductometric biosensors with high dynamic range and high sensitivity Sens. Actuators B Chem 44, 365–369 (1997). doi:10.1016/S0925-4005(97)00227-X

    Article  Google Scholar 

  • J. Vincent, Lactate and biochemical indexes of oxygenation, in Principles and Practice of Intensive Care Monitoring, ed. by M. Tobin (McGraw-Hill, New York, 1998)

  • K. Ward, R. Ivatury, R. Barbee, Endpoints of resuscitation for the victim of trauma J. Intensive Care Med. 16, 55–75 (2001). doi:10.1046/j.1525-1489.2001.00055.x

    Article  Google Scholar 

  • W. Ward, J. Jouse, J. Birck, E. Anderson, L. Jansen, A wire-based dual-analyte sensor for glucose and lactate: in vitro and in vivo evaluation Diabetes Technol. Ther. 6, 389–401 (2004). doi:10.1089/152091504774198106

    Article  Google Scholar 

  • G. Wilson, R. Gifford, Biosensors for real-time in vivo measurements Biosens. Bioelectron 20, 2388–2403 (2005). doi:10.1016/j.bios.2004.12.003

    Article  Google Scholar 

  • B. Yu, Y. Ju, Y. Moussy, F. Moussy, An investigation of long-term performance of minimally invasive glucose biosensors Diabetes Technol. Ther. 9, 265–275 (2007). doi:10.1089/dia.2006.0020

    Article  Google Scholar 

Download references

Funding

This work was supported by the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and by the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips (C3B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Guiseppi-Elie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justin, G., Finley, S., Abdur Rahman, A.R. et al. Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). Biomed Microdevices 11, 103–115 (2009). https://doi.org/10.1007/s10544-008-9214-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9214-3

Keywords

Navigation