Skip to main content
Log in

Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper reports a micromachined drug delivery device that is wirelessly operated using radiofrequency magnetic fields for implant applications. The controlled release from the drug reservoir of the device is achieved with the microvalves of poly(N-isopropylacrylamide) thermoresponsive hydrogel that are actuated with a wireless resonant heater, which is activated only when the field frequency is tuned to the resonant frequency of the heater circuit. The device is constructed by bonding a 1-mm-thick polyimide component with the reservoir cavity to the heater circuit that uses a planar coil with the size of 5–10 mm fabricated on polyimide film, making all the outer surfaces to be polyimide. The release holes created in a reservoir wall are opened/closed by the hydrogel microvalves that are formed inside the reservoir by in-situ photolithography that uses the reservoir wall as a photomask, providing the hydrogel structures self-aligned to the release holes. The wireless heaters exhibit fast and strong response to the field frequency, with a temperature increase of up to 20°C for the heater that has the 34-MHz resonant frequency, achieving 38-% shrinkage of swelled hydrogel when the heater is excited at its resonance. An active frequency range of ~2 MHz is observed for the hydrogel actuation. Detailed characteristics in the fabrication and actuation of the hydrogel microvalves as well as experimental demonstrations of frequency-controlled temporal release are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Portion of this manuscript has appeared as a conference abstract (Sarraf et al. 2009).

References

  • B. Bae, H. Kee, S. Kim, Y. Lee, T. Sim, Y. Kim, K. Park, In vitro experiment of the pressure regulating valve for a glaucoma implant. J. Micromech. Microeng. 13, 613 (2003)

    Article  Google Scholar 

  • P. Basset, A. Kaiser, P Bigotte, D. Collard, L. Buchaillot, A large stepwise motion electrostatic actuator for a wireless microrobot. Tech. Digest IEEE Int. Conf. Micro Electro Mech. Sys. (2002), pp. 606–609

  • J.-W. Choi, K.W. Oh, A. Han, C.A. Wijayawardhana, C. Lannes, S. Bhansali, K.T. Schlueter, W.R. Heineman, H.B. Halsall, J.H. Nevin, A.J. Helmicki, H.T. Henderson, C.H. Ahn, Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed. Microdevices 3, 191 (2001)

    Article  Google Scholar 

  • D.T. Eddington, D.J. Beebe, A valved responsive hydrogel microdispensing device with integrated pressure source. J. Microelectromech. Sys. 13, 586 (2004)

    Article  Google Scholar 

  • A.T. Evans, J.M. Park, S. Chiravuri, Y.B. Gianchandani, A low power, microvalve regulated architecture for drug delivery systems. Biomed. Microdevices 12, 159 (2010)

    Article  Google Scholar 

  • C. Fu, Z. Rummler, W. Chomburg, Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding. J. Micromech. Microeng. 13, S96 (2003)

    Article  Google Scholar 

  • S. Ghosh, C. Yang, T. Cai, Z. Hu, A. Neogi, Oscillating magnetic field-actuated microvalves for micro- and nanofluidics. J. Phys. D Appl. Phys. 42, 135501 (2009)

    Article  Google Scholar 

  • I.K. Glasgow, D.J. Beebe, V.E. White, Design rules for polyimide solvent bonding. Sens. Mater. 11, 269 (1999)

    Google Scholar 

  • A.R. Grayson, R.S. Shawgo, Y. Li, M.J. Cima, Electronic MEMS for triggered delivery. Adv. Drug Deliv. Rev. 56, 173 (2004)

    Article  Google Scholar 

  • S. Hirotsu, Y. Hirokawa, T. Tanaka, Volume-phase transitions of ionized N-isopropylacrylamide gels. J. Chem. Phys. 87, 1392 (1987)

    Article  Google Scholar 

  • A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3 (2002)

    Article  Google Scholar 

  • Y. Huang, X. Tian, S. Yang, R.K.Y. Fu, P.K. Chu, Optical and mechanical properties of alumina films fabricated on Kapton polymer by plasma immersion ion implantation and deposition using different biases. Appl. Surf. Sci. 253, 9483 (2007)

    Article  Google Scholar 

  • M. Lei, A. Baldi, T. Pan, Y. Gu, R.A. Siegel, B. Ziaie, A hydrogel-based wireless chemical sensor. Tech. Digest IEEE Int. Conf. Micro Electro Mech. Sys. pp. 391–394, (2004)

  • Y. Li, R.S. Shawgo, B. Tyler, P.T. Henderson, J.S. Vogel, A. Rosenberg, P.B. Storm, R. Langer, H. Brem, M.J. Cima, In vivo release from a drug delivery MEMS device. J. Control Rel. 100, 211 (2004)

    Article  Google Scholar 

  • P. Li, T.K. Givrad, D.P. Holschneider, J.-M.I. Maarek, E. Meng, A Parylene MEMS electrothermal valve. J. Microelectromech. Sys. 18, 1184 (2009)

    Article  Google Scholar 

  • R.H. Liu, Q. Yu, D.J. Beebe, Fabrication and characterization of hydrogel based microvalves. J. Microelectromech. Sys. 11, 45 (2002)

    Article  Google Scholar 

  • T. Liu, S. Hu, D. Liu, S. Chen, I. Chen, Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4, 52 (2009)

    Article  Google Scholar 

  • L. Low, S Seetharaman, K. He, M. J. Madou, Microactuators toward microvalves for responsive controlled drug delivery. Sensor Actuator B: Chem. 67, 149 (2000)

    Google Scholar 

  • A. Meckes, J. Behrens, O. Kayser, W. Benecke, T. Becker, G. Muller, Microfluidic system for the integration and cyclic operation of gas sensors. Sensor Actuator A Phys. 76, 478 (1999)

    Article  Google Scholar 

  • M. Morita, T. Inoue, T. Yamada, Y. Takemura, T. Niwa, T. Inoue, Resonant circuits for hyperthermia excited by RF magnetic field of MRI. IEEE Trans. Magn. 41, 3673 (2005)

    Article  Google Scholar 

  • J. Motoyama, T. Hakata, R. Kato, N. Yamashita, T. Morino, T. Kobayashi, H. Honda, Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy. BioMag. Res. Technol. (2008) doi:10.1186/1477-044X-6-4

  • K.W. Oh, C.H. Ahn, A review of microvalves. J. Micromech. Microeng. 16, R13 (2006)

    Article  Google Scholar 

  • K.W. Oh, R. Rong, C.H. Ahn, Miniaturization of pinch-type valves and pumps for practical micro total analysis system integration. J. Micromech. Microeng. 15, 2449 (2005)

    Article  Google Scholar 

  • N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27 (2000)

    Article  Google Scholar 

  • J.H. Prescott, S. Lipka, S. Baldwin, N.F. Sheppard, J.M. Maloney, J. Copetta, B. Yomotov, M.A. Staples, J.T. Santini, Chronic, programmed polypeptide delivery from an implanted multireservoir multi-chip Device. Nat. Biotechnol. 24, 437 (2006)

    Article  Google Scholar 

  • R.R. Richardson Jr., J.A. Miller, W.M. Reichert, Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials 14, 627 (1993)

    Article  Google Scholar 

  • C. Rivest, D.W.G. Morrison, B. Ni, J. Rubin, V. Yadav, A. Mahdavi, J.M. Karp, A. Khademhosseini, Microscale hydrogels for medicine and biology: synthesis, characteristics and applications. J. Mech. Mater. Struct. 2, 1103 (2007)

    Article  Google Scholar 

  • J.T. Santini, M.J. Cima, R. Langer, A controlled release michrochip. Nature 397, 335 (1999)

    Article  Google Scholar 

  • J.T. Santini, A.C. Richards, R. Scheidt, M.J. Cima, R. Langer, Microchips as controlled drug delivery devices. Angew. Chem. Int. Ed. 39, 2397 (2000)

    Google Scholar 

  • E.H. Sarraf, G.K. Wong, K. Takahata, Frequency-selectable wireless actuation of hydrogel using micromachined resonant heaters toward implantable drug delivery applications (Tech. Digest IEEE Int. Conf. Solid-State Sensors, Actuators and Microsystems, 2009), pp. 1525–1528

    Google Scholar 

  • S.D. Senturia, Microsystem Design (Kluwer Academic Publishers, New York, 2001)

    Google Scholar 

  • M. Shibayama, S. Mizutani, S. Nomura, Structure relaxation of hydrophobically agregated poly(N-isopropylacrylamide) in water. Macromol. 29, 2019 (1996)

    Article  Google Scholar 

  • R.A. Siegel, Y. Gu, A. Baldi, B. Ziaie, Novel swelling/shrinking behaviors of glucose-binding hydrogels and their potential use in insulin delivery. Macromol. Symp. 207, 249 (2004)

    Article  Google Scholar 

  • S. Smith, T.B. Tang, J.G. Terry, J.T.M. Stevenson, B.W. Flynn, H.M. Reekie, A.F. Myrray, A.M. Gundlach, D. Renshaw, B. Dhillon, Y. Inouse, A.J. Walton, Development of a miniaturized drug delivery system with wireless power transfer and communication. IET Nanobiotechnol. 1, 80 (2007)

    Article  Google Scholar 

  • Y. Sun, S.P. Lacour, R.A. Brooks, N. Rushton, J. Fawcett, R.E. Cameron, Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. J. Biomed. Mat. Res. A 90A, 648 (2008)

    Article  Google Scholar 

  • T.B Tang, S. Smith, B.W. Flynn, J.T.M. Stevenson, A.M. Gundlach, H.M. Reekie, A.F. Murray, D. Renshaw, B. Dhillon, A. Ohtori, Y. Inoue, J.G. Terry, A.J. Walton, Implementation of wireless power transfer and communications for an implantable ocular drug delivery system. IET Nanobiotechnol. 2, 72 (2008)

  • N.C. Tsai, C.Y. Sue, Review of MEMS-based drug delivery and dosing systems. Sensor Actuator A Phys. 134, 555 (2007)

    Article  Google Scholar 

  • H. Van Der Linden, W. Olthuis, P. Bergveld, An efficient method for the fabrication of temperature-sensitive hydrogel microactuators. Lab Chip 4, 619 (2004)

    Article  Google Scholar 

  • K. Vollmers, D.R. Frutiger, B.E. Kratochvil, B.J. Nelson, Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl. Phys. Lett. 92, 144103 (2008)

    Article  Google Scholar 

  • Y. Yang, Y. Huang, H. Liao, T. Wang, P. Huang, C. Lin, Y. Wang, S. Lu, A release-on-demand wireless CMOS drug delivery SoC based on electrothermal activation technique. Digest Tech. IEEE Int. Solid-State Circ. Conf. (2009), pp. 288-290

  • C. Yu, S. Mutlu, P. Selvaganapathy, C.H. Mastrangelo, F. Svec, J.M.J. Frechet, Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal. Chem. 75, 1958 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Karen Cheung for providing access to a fluorescent microscope and helpful comments in the analysis and also thank Ningyuan Wang for his assistance in circuit fabrication. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and CMC Microsystems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Takahata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimi, S., Sarraf, E.H., Wong, G.K. et al. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves. Biomed Microdevices 13, 267–277 (2011). https://doi.org/10.1007/s10544-010-9491-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9491-5

Keywords

Navigation