Skip to main content

Advertisement

Log in

An intra-cerebral drug delivery system for freely moving animals

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microinfusions of drugs directly into the central nervous system of awake animals represent a widely used means of unravelling brain functions related to behaviour. However, current approaches generally use tethered liquid infusion systems and a syringe pump to deliver drugs into the brain, which often interfere with behaviour. We address this shortfall with a miniaturised electronically-controlled drug delivery system (20 × 17.5 × 5 mm3) designed to be skull-mounted in rats. The device features a micropump connected to two 8-mm-long silicon microprobes with a cross section of 250 × 250 μm2 and integrated fluid microchannels. Using an external electronic control unit, the device allows infusion of 16 metered doses (0.25 μL each, 8 per silicon shaft). Each dosage requires 3.375 Ws of electrical power making the device additionally compatible with state-of-the-art wireless headstages. A dosage precision of 0.25 ± 0.01 μL was determined in vitro before in vivo tests were carried out in awake rats. No passive leakage from the loaded devices into the brain could be detected using methylene blue dye. Finally, the device was used to investigate the effects of the NMDA-receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid, (R)-CPP, administered directly into the prefrontal cortex of rats during performance on a task to assess visual attention and impulsivity. In agreement with previous findings using conventional tethered infusion systems, acute (R)-CPP administration produced a marked increase in impulsivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akzo Nobel, Eine technische Präsentation der Expancel® Mikrosphären, Technische Information Nr. 40 (2006)

  • A. Bari, J.W. Dalley, T.W. Robbins, The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat. Protoc. 3(5), 759–767 (2008)

    Article  Google Scholar 

  • A. Bonfanti, G. Zambra, G. Baranauskas, G.N. Angotzi, E. Maggiolini, M. Semprini, A. Vato, L. Fadiga, A.S. Spinelli, A.L. Lacaita, A wireless microsystem with digital data compression for neural spike recording. Microelectron. Eng. 88(8), 1672–1675 (2011)

    Article  Google Scholar 

  • M.A. Bozarth, R.A. Wise, Electrolytic microinfusion transducer system: an alternative method of intracranial drug application. J. Neurosci. Methods 2(3), 273–275 (1980)

    Article  Google Scholar 

  • M. Carli, M. Baviera, R.W. Invernizzi, C. Balducci, Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 31(4), 757–767 (2006)

    Article  Google Scholar 

  • J. Chen, K.D. Wise, J.F. Hetke, S.C. Bledsoe Jr., A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 44(8), 760–769 (1997)

    Article  Google Scholar 

  • H.E. Criswell, A simple chronic microinjection system for use with chemitrodes. Pharmacol. Biochem. Behav. 6(2), 237–238 (1977)

    Article  Google Scholar 

  • H. Domininghaus, P. Elsner, P. Eyerer, T. Hirth, Kunststoffe: Eigenschaften und Anwendungen, 7th edn. (Springer, Berlin, 2008)

    Google Scholar 

  • D. Fan, D. Rich, T. Holtzman, P. Ruther, J.W. Dalley, A. Lopez, M.A. Rossi, J.W. Barter, D. Salas-Meza, S. Herwik, T. Holzhammer, J. Morizio, H.H. Yin, A wireless multi-channel recording system for freely behaving mice and rats. PLoS One 6(7), e22033 (2011)

    Article  Google Scholar 

  • O. Frey, T. Holtzman, R.M. McNamara, D.E.H. Theobald, P.D. van der Wal, N.F. de Rooij, J.W. Dalley, M. Koudelka-Hep, Enzyme-based choline and l-glutamate biosensor electrodes on silicon microprobe arrays. Biosens. Bioelectron. 26(2), 477–484 (2010)

    Article  Google Scholar 

  • P. Griss, H. Andersson, G. Stemme, Expandable microspheres for the handling of liquids. Lab Chip 2(2), 117–120 (2002)

    Article  Google Scholar 

  • M. HajjHassan, V. Chodavarapu, S. Musallam, NeuroMEMS: neural probe microtechnologies. Sens. 8(10), 6704–6726 (2008)

    Article  Google Scholar 

  • A.C. Hoogerwerf, K.D. Wise, A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41(12), 1136–1146 (1994)

    Article  Google Scholar 

  • S. Ikemoto, L.G. Sharpe, A head-attachable device for injecting nanoliter volumes of drug solutions into brain sites of freely moving rats. J. Neurosci. Methods 110(1–2), 135–140 (2001)

    Article  Google Scholar 

  • M.D. Johnson, R.K. Franklin, M.D. Gibson, R.B. Brown, D.R. Kipke, Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. J. Neurosci. Methods 174(1), 62–70 (2008)

    Article  Google Scholar 

  • D.R. Kipke, W. Shain, G. Buzsáki, E. Fetz, J.M. Henderson, J.F. Hetke, G. Schalk, Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28(46), 11830–11838 (2008)

    Article  Google Scholar 

  • G. Lacey, Microelectrophoresis and Pressure Ejection Methods, in Neuroscience Methods: A Guide for Advanced Students, ed. by R. Martin (Harwood Academic Publishers, Amsterdam, 1997), pp. 80–84. Chap. 12

    Google Scholar 

  • P.M. Lalley, Microiontophoresis and Pressure Ejection, in Modern Techniques in Neuroscience Research, ed. by U. Windhorst, H. Johansson (Springer, Berlin, 1999), pp. 193–212. Chap. 7

    Chapter  Google Scholar 

  • P.S. Motta, J.W. Judy, Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans. Biomed. Eng. 52(5), 923–933 (2005)

    Article  Google Scholar 

  • E.R. Murphy, J.W. Dalley, T.W. Robbins, Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacol. (Heidelberg, Ger.) 179(1), 99–107 (2005)

    Article  Google Scholar 

  • S. Musa, M. Welkenhuysen, R. Huys, W. Eberle, K. Kuyck, C. Bartic, B. Nuttin, G. Borghs, Planar 2D-Array Neural Probe for Deep Brain Stimulation and Recording (DBSR), in Proc. 4th Eur. Conf. of the IFMBE, IFMBE Proceedings, vol. 22 (Springer, Berlin, 2009), pp. 2421–2425

    Google Scholar 

  • H.P. Neves, G.A. Orban, M. Koudelka-Hep, T. Stieglitz, P. Ruther, Development of modular multifunctional probe arrays for cerebral applications, in Proc. 3rd Int. IEEE EMBS Conf. on Neural Eng., pp. 104–109 (2007)

  • P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, U.G. Hofmann, A 32-site neural recording probe fabricated by DRIE of SOI substrates. J. Micromech. Microeng. 12(4), 414–419 (2002)

    Article  Google Scholar 

  • T.W. Robbins, The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacol. (Heidelberg, Ger.) 163(3–4), 362–380 (2002)

    Article  MathSciNet  Google Scholar 

  • N. Roxhed, S. Rydholm, B. Samel, W. van der Wijngaart, P. Griss, G. Stemme, A compact, low-cost microliter-range liquid dispenser based on expandable microspheres. J. Micromech. Microeng. 16(12), 2740–2746 (2006)

    Article  Google Scholar 

  • S. Royer, B.V. Zemelman, M. Barbic, A. Losonczy, G. Buzsáki, J.C. Magee, Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31(12), 2279–2291 (2010)

    Article  Google Scholar 

  • P. Ruther, A. Aarts, O. Frey, S. Herwik, S. Kisban, K. Seidl, S. Spieth, A. Schumacher, M. Koudelka-Hep, O. Paul, T. Stieglitz, R. Zengerle, H. Neves, The NeuroProbes project – Multifunctional probe arrays for neural recording and stimulation. Biomed. Techn. 53(Suppl. 1), 238–240 (2008)

    Google Scholar 

  • P. Ruther, S. Herwik, S. Kisban, K. Seidl, O. Paul, Recent progress in neural probes using silicon MEMS technology. IEEJ Trans. Electr. Electron. Eng. 5(5), 505–515 (2010)

    Article  Google Scholar 

  • B. Samel, P. Griss, G. Stemme, A thermally responsive PDMS composite and its microfluidic applications. J. Microelectromech. Syst. 16(1), 50–57 (2007)

    Article  Google Scholar 

  • K. Seidl, S. Spieth, S. Herwik, J. Steigert, R. Zengerle, O. Paul, P. Ruther, In-plane silicon probes for simultaneous neural recording and drug delivery. J. Micromech. Microeng. 20(10), 105006 (11pp) (2010).

    Article  Google Scholar 

  • S. Spieth, A. Schumacher, K. Seidl, K. Hiltmann, S. Haeberle, R. McNamara, J.W. Dalley, S.A. Edgley, P. Ruther, R. Zengerle, Robust microprobe systems for simultaneous neural recording and drug delivery, in Proc. 4th Eur. Conf. of the IFMBE, IFMBE Proceedings, vol. 22 (Springer, Berlin, 2009), pp. 2426–2430

    Google Scholar 

  • S. Spieth, A. Schumacher, S. Messner, T. Holtzman, P.D. Rich, J.W. Dalley, R. Zengerle, A miniaturized on-demand drug delivery system for neural research, in Proc. 6th Int. Conf. on Microtechn. in Med. and Biol., pp. 62–63 (2011)

  • S. Spieth, A. Schumacher, S. Messner, R. Zengerle, The NeuroMedicator - A micropump integrated with silicon microprobes for drug delivery in neural research. J. Micromech. Microeng., in press (2012)

  • T.A. Szuts, V. Fadeyev, S. Kachiguine, A. Sher, M.V. Grivich, M. Agrochão, P. Hottowy, W. Dabrowski, E.V. Lubenov, A.G. Siapas, N. Uchida, A.M. Litke, M. Meister, A wireless multi-channel neural amplifier for freely moving animals. Nat. Neurosci. 14(2), 263–269 (2011)

    Article  Google Scholar 

  • K.D. Wise, A.M. Sodagar, Y. Yao, M.N. Gulari, G.E. Perlin, K. Najafi, Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 96(7), 1184–1202 (2008)

    Article  Google Scholar 

  • A.N. Zorzos, E.S. Boyden, C.G. Fonstad, Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35(24), 4133–4135 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed in the frame of the Information Society Technologies (IST) Integrated Project Neuro-Probes of the 6th Framework Program (FP6) of the European Commission (Project number IST-027017). The authors gratefully acknowledge funding support by the Wellcome Trust and MRC in the United Kingdom through support of the Behavioural and Clinical Neuroscience Institute (BCNI) at Cambridge University. We also acknowledge support from Karsten Seidl, Patrick Ruther, and the cleanroom facility of IMTEK, University of Freiburg, as well as the support from the cleanroom and the machine shop facilities at HSG-IMIT. The authors would like to thank Joachim Leicht, Bernd Ehrbrecht, Jürgen Merz, and Alexander Fabricius (all HSG-IMIT) for conception, assembly, and programming of the electronic control unit. Furthermore, the authors would like to thank Björn Samel and Göran Stemme of Royal Institute of Technology Stockholm for useful discussions and insights. The provision of microspheres from Expancel, Sundsvall, Sweden, TPE membranes from KRAIBURG TPE GmbH & Co. KG, Waldkraiburg, Germany, and COP plates from Zeon Corporation, Tokyo, Japan, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Spieth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spieth, S., Schumacher, A., Holtzman, T. et al. An intra-cerebral drug delivery system for freely moving animals. Biomed Microdevices 14, 799–809 (2012). https://doi.org/10.1007/s10544-012-9659-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9659-2

Keywords

Navigation