Skip to main content
Log in

Development of a micro-mechanical valve in a novel glaucoma implant

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper describes methods for design, manufacturing and characterization of a micro-mechanical valve for a novel glaucoma implant. The implant is designed to drain aqueous humour from the anterior chamber of the eye into the suprachoroidal space in case of an elevated intraocular pressure (IOP). In contrast to any existing glaucoma drainage device (GDD), the valve mechanism is located in the anterior chamber and there, surrounded by aqueous humour, immune to fibrosis induced failure. For the prevention of hypotony the micro-mechanical valve is designed to open if the physiological pressure difference between the anterior chamber and the suprachoroidal space in the range of 0.8 mmHg to 3.7 mmHg is exceeded. In particular the work includes: (i) manufacturing and morphological characterization of polymer tubing, (ii) mechanical material testing as basis for (iii) the design of micro-mechanical valves using finite element analysis (FEA), (iv) manufacturing of microstent prototypes including micro-mechanical valves by femtosecond laser micromachining and (v) the experimental fluid-mechanical characterization of the manufactured microstent prototypes with regard to valve opening pressure. The considered materials polyurethane (PUR) and silicone (SIL) exhibit low elastic modulus and high extensibility. The unique valve design enables a low opening pressure of micro-mechanical valves. An ideal valve design for PUR and SIL with an experimentally determined opening pressure of 2 mmHg and 3.7 mmHg is identified. The presented valve approach is suitable for the inhibition of hypotony as a major limitation of today’s GDD and will potentially improve the minimally invasive treatment of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • R. Allemann, S. Langner, M. Witt, W. Schmidt, K.P. Schmitz, N. Hosten, R. Guthoff, O. Stachs, Curr Eye Res 36(8), 719–26 (2011)

    Article  Google Scholar 

  • B. Bae, H. Kee, S. Kim, Y. Lee, T. Sim, Y. Kim, K. Park, J. Micromech, Microeng. 13, 613–619 (2003)

    Article  Google Scholar 

  • B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109–115 (1996)

    Article  Google Scholar 

  • E. De Berardinis, O. Tieri, A. Polzella, N. Iuglio, Exp Eye Res 4(3), 179–86 (1965)

    Article  Google Scholar 

  • T.S. Dietlein, J. Jordan, C. Lueke, G.K. Krieglstein, Graefes Arch Clin Exp Ophthalmol 246(12), 1653–64 (2008)

    Article  Google Scholar 

  • Dow Corning Corporation, Silastic RX-50 medical grade tubing. http://www.dowcorning.com/applications/search/products/Details.aspx?prod=01707272&type=prod. Accessed 08 March 2012

  • K. Emi, J.E. Pederson, C.B. Toris, Invest. Ophtahalmol. Vis. Sci. 30, 233–238 (1989)

    Google Scholar 

  • B.A. Francis, A. Cortes, J. Chen, J.A. Alvarado, Ophthalmology 105(9), 1708–14 (1998)

    Article  Google Scholar 

  • S.J. Gedde, J.C. Schiffman, W.J. Feuer, L.W. Herndon, J.D. Brandt, D.L. Budenz, Am J Ophthalmol 143(1), 9–22 (2007)

    Article  Google Scholar 

  • S.J. Gedde, J.C. Schiffman, W.J. Feuer, L.W. Herndon, J.D. Brandt, D.L. Budenz, Tube Versus Trabeculectomy Study Group, Am J Ophthalmol 148(5), 670–84 (2009)

    Article  Google Scholar 

  • S.J. Gedde, D.K. Heuer, R.K. Parrish 2nd, Tube Versus Trabeculectomy Study Group, Curr Opin Ophthalmol 21(2), 123–8 (2010)

    Article  Google Scholar 

  • R.F. Guthoff, W. Schmidt, D. Buss, C. Schultze, U. Ruppin, O. Stachs, K. Sternberg, D. Klee, B. Chichkov, K.P. Schmitz, Ophthalmologe 106(9), 805–12 (2009)

    Article  Google Scholar 

  • A. Heijl, M.C. Leske, B. Bengtsson, L. Hyman, B. Bengtsson, M. Hussein, Early Manifest Glaucoma Trial Group, Arch Ophthalmol 120(10), 1268–79 (2002)

    Google Scholar 

  • K.S. Lim, B.D. Allan, A.W. Lloyd, A. Muir, P.T. Khaw, Br J Ophthalmol 82(9), 1083–9 (1998)

    Article  Google Scholar 

  • K.S. Lim, B. Allan, P.T. Khaw, S. Willis, A.W. Lloyd, A. Muir, P. Gard, R.G.A. Faragher, C.J. Olliff, G.W. Hanlon, L. Wong, S. Reed, S. Denyer, Br J Ophthalmol 85(10), 1231–6 (2001)

    Article  Google Scholar 

  • MatWeb LLC. Lubrizol Thermedics Pellethane 2363-80AE Polyurethane Elastomer. http://www.matweb.com/search/DataSheet.aspx?MatGUID=7cbc1ae69de34a64b569af37cf5f4786&ckck=1. Accessed 08 March 2012

  • S. Moon, S. Im, J. An, C.J. Park, H.G. Kim, S.W. Park, H.I. Kim, J.H. Lee, Biomed. Microdev. 14(2), 325–35 (2011)

    Article  Google Scholar 

  • P.A. Netland, Ophthalmic Technology Assessment Committee Glaucoma Panel. American Academy of Ophthalmology. Ophthalmol. 108(2), 416–21 (2001)

    Article  Google Scholar 

  • Q.H. Nguyen, Curr Opin Ophthalmol 15(2), 147–50 (2004)

    Article  Google Scholar 

  • Q.H. Nguyen, Curr Opin Ophthalmol 20(2), 122–5 (2009)

    Article  Google Scholar 

  • J.A. Prata Jr., A. Mérmoud, L. LaBree, D.S. Minckler, Ophthalmology 102(6), 894–904 (1995)

    Google Scholar 

  • H.A. Quigley, A.T. Broman, Br J Ophthalmol 90(3), 262–7 (2006)

    Article  Google Scholar 

  • H. Saheb, I.I. Ahmed, Curr Opin Ophthalmol 23(2), 96–104 (2012)

    Article  Google Scholar 

  • W. Schmidt, K. Sternberg, D. Behrend, R. Guthoff, K.-P. Schmitz, inventors; Universität Rostock, assignee. Augenimplantat. German Offenlegungsschrift DE 10 2007 004 906 A1. 2008 July 31

  • C.J. Siegfried, About Glaucoma. http://www.ahaf.org/glaucoma. Accessed 27 February 2012

  • S. Siewert, C. Schultze, W. Schmidt, U. Hinze, B. Chichkov, R. Guthoff, K.-P. Schmitz, Adapted bending stiffness and micro-mechanical valves in a novel glaucoma implant – Finite-Element-Analysis and experimental Studies. Biomed. Tech. 55(Suppl. 1), (2010). doi:10.1515/BMT.2010.363

  • T. Utzmann, C. Schultze, U. Ruppin, S. Siewert, W. Schmidt, O. Specht, R. Guthoff, K.-P. Schmitz, In vitro pressure-flow characterization of specimens with regard to glaucoma implants. Biomed. Tech. 55(Suppl. 1), (2010). doi:10.1515/BMT.2010.360

  • P.G. Watson, C. Jakeman, M. Ozturk, M.F. Barnett, F. Barnett, K.T. Khaw, Eye (Lond) 4(Pt 3), 425–38 (1990)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the German Research Foundation (DFG) as a part of the Special Research Program Transregio 37 “Micro- and Nanosystems in Medicine – Reconstruction of Biological Functions”.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Siewert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siewert, S., Schultze, C., Schmidt, W. et al. Development of a micro-mechanical valve in a novel glaucoma implant. Biomed Microdevices 14, 907–920 (2012). https://doi.org/10.1007/s10544-012-9670-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9670-7

Keywords

Navigation