Skip to main content
Log in

A micro-drive hearing aid: a novel non-invasive hearing prosthesis actuator

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The direct hearing device (DHD) is a new auditory prosthesis that combines conventional hearing aid and middle ear implant technologies into a single device. The DHD is located deep in the ear canal and recreates sounds with mechanical movements of the tympanic membrane. A critical component of the DHD is the microactuator, which must be capable of moving the tympanic membrane at frequencies and magnitudes appropriate for normal hearing, with little distortion. The DHD actuator reported here utilized a voice coil actuator design and was 3.7 mm in diameter. The device has a smoothly varying frequency response and produces a precisely controllable force. The total harmonic distortion between 425 Hz and 10 kHz is below 0.5 % and acoustic noise generation is minimal. The device was tested as a tympanic membrane driver on cadaveric temporal bones where the device was coupled to the umbo of the tympanic membrane. The DHD successfully recreated ossicular chain movements across the frequencies of human hearing while demonstrating controllable magnitude. Moreover, the micro-actuator was validated in a short-term human clinical performance study where sound matching and complex audio waveforms were evaluated by a healthy subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • W. Chien, M.E. Ravicz, S.N. Merchant, and J.J Rosowski “The Effect of Methodological Differences in the Measurement of Stapes Motion in Live and Cadaver Ears.” Audiol. Neuro.-Otol. 11 (3) (January): 183–97.(2006) doi:10.1159/000091815. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2917778&tool=pmcentrez&rendertype=abstract

  • W. Chien, M.E. Ravicz, J.J. Rosowski, S.N. Merchant, Measurements of human middle- and inner-Ear mechanics with dehiscence of the superior semicircular canal. Otol. Neurotology 28(2), 250–7 (2007). doi:10.1097/01.mao.0000244370.47320.9a

    Article  Google Scholar 

  • L. Chittka, A. Brockmann, Perception space--the final frontier. PLoS Biol. 3(4), e137 (2005). doi:10.1371/journal.pbio.0030137

    Article  Google Scholar 

  • K. Chung, Challenges and recent developments in hearing aids: part II. Feedback and occlusion effect reduction strategies, laser shell manufacturing processes, and other signal processing technologies. Trends Amplification 8(4), 125–164 (2004). doi:10.1177/108471380400800402

    Article  Google Scholar 

  • P. Counter, “Implantable hearing aids.” proceedings of the institution of mechanical engineers. Part H. J. Eng. Med. 222(6), 837–52 (2008)

    Article  Google Scholar 

  • W.F. Decraemer, “Area Change and Volume Displacement of the Human Tympanic Membrane under Static Pressure.” ReVision di: 99–104. (1992)

  • W.F. Decraemer, J.J. Dirckx, and W.R. Funnell, “Shape and Derived Geometrical Parameters of the Adult, Human Tympanic Membrane Measured with a Phase-Shift Moiré Interferometer.” Heart. Res. 51 (1) (January): 107–21. (1991) http://www.ncbi.nlm.nih.gov/pubmed/2013538.

  • H. Djalilian, and H. Mahboubi. “A Novel Method to Determine Standardized Anatomic Dimensions and Variation of the Osseous External Auditory Canal.” Otol. Neurotology: 13–18. (2011)

  • R.L. Goode, M. Killion, K. Nakamura, S. Nishihara, New knowledge about the function of the human middle Ear: development of an improved analog model. Otol. Neurotology 15(2), 145 (1994)

    Google Scholar 

  • A.J. Gulya, Glasscock-Shambaugh Surgery of the Ear. Edited by Aina J. Gulya, Lloyd B. Minor, and Denis Poe. PMPH-USA. (2010)

  • K. Homma, Y. Du, Y. Shimizu, and S. Puria “Ossicular Resonance Modes of the Human Middle Ear for Bone and Air Conduction.” J. Acoust. Soc. Am. 125 (2) (February): 968–79. (2009) doi:10.1121/1.3056564. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2852437&tool=pmcentrez&rendertype=abstract.

  • E.-P. Hong, II-Y. Park, K.-W. Seong, and J.-H. Cho “Evaluation of an Implantable Piezoelectric Floating Mass Transducer for Sensorineural Hearing Loss.” Mechatron. 19 (6) (September): 965–971. (2009) doi:10.1016/j.mechatronics.2009.07.001. http://linkinghub.elsevier.com/retrieve/pii/S0957415809001275.

  • J.V.D. Hough, M. Pamela, M.W. Wood, R. Kent Dyer, Middle Ear electromagnetic semi-implantable hearing device: results of the phase II SOUNDTEC direct system clinical trial. Otol. Neurotology 23(6), 895–903 (2002)

    Article  Google Scholar 

  • W.H. Ko, W. Zhu, A. Maniglia, Engineering principles of mechanical stimulation of the middle Ear. Otolaryngol. Clin. N. Am. 28, 29–41 (1995)

    Google Scholar 

  • S. Kochkin, MarkeTrak VII: obstacles to adult Non-user adoption of hearing aids. Heart. J. 60(4), 24 (2007)

    Google Scholar 

  • S. Kochkin, MarkeTrak VIII: 25-years trends in the hearing health market. Heart. Rev. 16(10), 12–31 (2009)

    Google Scholar 

  • H. Kurokawa, and R.L. Goode “Sound Pressure Gain Produced by the Human Middle Ear.” Otolaryngol-Head and Neck Surg.: Off. J Am. Acad. Otolaryngol.-Head and Neck Surg. 113 (4) (October): 349–55. (1995) http://www.ncbi.nlm.nih.gov/pubmed/7567003.

  • H. Leysieffer, J.W. Baumann, G. Müller, H.P. Zenner, An implantable piezoelectric hearing Aid transducer for inner Ear deafness. II: clinical implant. HNO 45(10), 801–15 (1997)

    Article  Google Scholar 

  • H. Liu, Z. Rao, and N. Ta “Finite Element Analysis of the Effects of a Floating Mass Transducer on the Performance of a Middle Ear Implant.” J. Med. Eng. Technol. 35 (5–6): 316–23. (2010) doi:10.3109/03091902.2010.481033. http://www.ncbi.nlm.nih.gov/pubmed/20459346

  • H. Mahboubi, P.E. Paulick, Y.Ghavami, A.Y. Yau, M. Bachman, and H.R. Djalilian, “Short-Term Clinical Performance of the Direct-Drive Hearing Device: A Pilot Study.” In 147th Annual Meeting Am. Otol. Soc., Inc. (2014)

  • M.S. Mannan, Lees’ Loss Prevention in the Process Industries: Hazard Identification Assessment and Control. 4th ed. Butterworth-Heinemann. (2012)

  • N. Hato. S. Stenfelt, and R.L Goode “Three-Dimensional Stapes Footplate Motion in Human Temporal Bones.” Audiol. Neuro.-Otol. 8 (3): 140–52. (2003) doi:10.1159/000069475. http://www.ncbi.nlm.nih.gov/pubmed/12679625.

  • P. Paulick, E.H. Mahboubi, H.R. Djalilian, and M. Bachma, “Short-Term Clinical Performance of the Direct Hearing Device: A Pilot Study.” Otol. Neurotol. IN REVIEW, (2014)

  • R.R. Paulsen, Statistical Shape Analysis of the Human Ear Canal with Application to In-the-Ear Hearing Aid Design. Mathematical Modelling. (2004)

  • R. Perkins, J.P. Fay, P. Rucker, M. Rosen, L. Olson, S. Puria, The EarLens system: New sound transduction methods. Hear. Res. 263(1–2), 104–13 (2010). doi:10.1016/j.heares.2010.01.012

    Article  Google Scholar 

  • M.J. Shinners, C.W. Hilton, S.C. Levine, Implantable hearing devices. Curr. Opin. Otolaryngol. Head Neck Surg. 16(5), 416–9 (2008). doi:10.1097/MOO.0b013e32830a49f0

    Article  Google Scholar 

  • C. Stieger, C. Candreia, M. Kompis, G. Herrmann, F. Pfiffner, D. Widmer, and A. Andreas, “Laser Doppler Vibrometric Assessment of Middle Ear Motion in Thiel-Embalmed Heads.” Otol. Neurotol.: Off. Publ. Am. Otological Soc., Am. Neurotol. Soc. Eur. Acad. Otol. Neurotology 33 (3) (April): 311–8. (2012) doi:10.1097/MAO.0b013e3182487de0. http://www.ncbi.nlm.nih.gov/pubmed/22377645

  • A. Uziel, M. Mondain, P. Hagen, F. Dejean, G. Doucet, Rehabilitation for high-frequency sensorineural hearing impairment in adults with the symphonix vibrant soundbridge: a comparative study. Otol. Neurotology 24(5), 775–83 (2003)

    Article  Google Scholar 

  • P. Vecchia, M. Hietanen, A. Ahlborn, International commission on Non-ioninzing radiation protection: guidelines on limits of exposure to static magnetic fields. Health Phys. 96(4), 504–514 (2009)

    Article  Google Scholar 

  • S.E. Voss, J.J. Rosowski, S.N. Merchant, and W.T. Peake, “Acoustic Responses of the Human Middle Ear.” HearT. Research 150 (1–2) (December): 43–69. (2000) http://www.ncbi.nlm.nih.gov/pubmed/11077192

Download references

Acknowledgements

The authors wish to thank individuals who donate their bodies and tissues for the advancement of education and research. Ethical approval for the use of human temporal bones was given through the University of California Irvine School of Medicine Willed Body Program. The authors also wish to thank Melinda JD Malley for her technical assistance in device assembly.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyton Elizabeth Paulick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulick, P.E., Merlo, M.W., Mahboubi, H. et al. A micro-drive hearing aid: a novel non-invasive hearing prosthesis actuator. Biomed Microdevices 16, 915–925 (2014). https://doi.org/10.1007/s10544-014-9896-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9896-7

Keywords

Navigation