Skip to main content

Advertisement

Log in

A multilayered microfluidic blood vessel-like structure

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

There is an immense need for tissue engineered blood vessels. However, current tissue engineering approaches still lack the ability to build native blood vessel-like perfusable structures with multi-layered vascular walls. This paper demonstrated a new method to fabricate tri-layer biomimetic blood vessel-like structures on a microfluidic platform using photocrosslinkable gelatin hydrogel. The presented method enables fabrication of physiological blood vessel-like structures with mono-, bi- or tri-layer vascular walls. The diameter of the vessels, the total thickness of the vessel wall and the thickness of each individual layer of the wall were independently controlled. The developed fabrication process is a simple and rapid method, allowing the physical fabrication of the vascular structure in minutes, and the formation of a vascular endothelial cell layer inside the vessels in 3–5 days. The fabricated vascular constructs can potentially be used in numerous applications including drug screening, development of in vitro models for cardiovascular diseases and/or cancer metastasis, and study of vascular biology and mechanobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • J. Barthes, H. Özçelik, M. Hindié, A. Ndreu-Halili, A. Hasan, N.E. Vrana, Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BioMed research international 2014, p. 18. doi:10.1155/2014/921905

  • J.A. Benton, C.A. Deforest, V. Vivekanandan, K.S. Anseth, Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15, 3221–30 (2009)

    Article  Google Scholar 

  • M.B. Browning, D. Dempsey, V. Guiza, S. Becerra, J. Rivera, B. Russell, M. Höök, F. Clubb, M. Miller, T. Fossum, J.F. Dong, A.L. Bergeron, M. Hahn, E. Cosgriff-Hernandez, Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 8, 1010–21 (2012)

    Article  Google Scholar 

  • L. Cao, P.R. Arany, Y.S. Wang, D.J. Mooney, Promoting angiogenesis via manipulation of VEGF responsiveness with notch signaling. Biomaterials 30, 4085–93 (2009)

    Article  Google Scholar 

  • R.R. Chen, E.A. Silva, W.W. Yuen, A.A. Brock, C. Fischbach, A.S. Lin, R.E. Guldberg, D.J. Mooney, Integrated approach to designing growth factor delivery systems. Faseb J. 21, 3896–903 (2007)

    Article  Google Scholar 

  • Y.-C. Chen, R.-Z. Lin, H. Qi, Y. Yang, H. Bae, J.M. Melero-Martin, A. Khademhosseini, Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 22, 2027–39 (2012)

    Article  Google Scholar 

  • K.M. Chrobak, D.R. Potter, J. Tien, Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185–96 (2006)

    Article  Google Scholar 

  • S. Chung, R. Sudo, P.J. Mack, C.-R. Wan, V. Vickerman, R.D. Kamm, Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9, 269–75 (2009)

    Article  Google Scholar 

  • D.C. Darland, P.A. D’Amore, TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10 T1/2 and endothelial cells. Angiogenesis 4, 11–20 (2001)

    Article  Google Scholar 

  • Y. Du, D. Cropek, M.R.K. Mofrad, E.J. Weinberg, A. Khademhosseinil, J. Borenstein, in Microfluidics for biological applications, ed. by W.-C. Tian, E. Finehout (Springer, New York, 2008)

    Google Scholar 

  • A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, F. Dehghani, A. Khademhosseini, Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 10, 11–25 (2014a)

    Article  Google Scholar 

  • A. Hasan, A. Paul, N.E. Vrana, X. Zhao, A. Memic, Y.-S. Hwang, M.R. Dokmeci, A. Khademhosseini, Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35, 7308–25 (2014b)

    Article  Google Scholar 

  • A. Hasan, K. Ragaert, W. Swieszkowski, S. Selimović, A. Paul, G. Camci-Unal, M.R.K. Mofrad, A. Khademhosseini, Biomechanical properties of native and tissue engineered heart valve constructs. J. Biomech. 47, 1949–63 (2014c)

    Article  Google Scholar 

  • A. Hasan, M. Nurunnabi, M. Morshed, A. Paul, A. Polini, T. Kuila, M. Al Hariri, Y-k. Lee, A.A. Jaffa, Recent advances in application of biosensors in tissue engineering. BioMed research international 2014, p. 18 (2014d)

  • A. Hasan, A. Khattab, M.A. Islam, K.A. Hweij, J. Zeitouny, R. Waters, M. Sayegh, M. Hossain, A. Paul, Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv. Sci. (2015). doi:10.1002/advs.201500122

  • T. Kaully, K. Kaufman-Francis, A. Lesman, S. Levenberg, Vascularization - the conduit to viable engineered tissues. Tissue Eng. Part B Rev. 15, 159–69 (2009)

    Article  Google Scholar 

  • A. Khademhosseini, J. Yeh, G. Eng, J. Karp, H. Kaji, J. Borenstein, O.C. Farokhzad, R. Langer, Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip 5, 1380–6 (2005)

    Article  Google Scholar 

  • A. Khademhosseini, J. Yeh, S. Jon, G. Eng, K.Y. Suh, J.A. Burdick, R. Langer, Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip 4, 425–30 (2004)

    Article  Google Scholar 

  • J.E. Leslie-Barbick, J.J. Moon, J.L. West, Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J. Biomater. Sci. Polym. Ed. 20, 1763–79 (2009)

    Article  Google Scholar 

  • J.E. Leslie-Barbick, J.E. Saik, D.J. Gould, M.E. Dickinson, J.L. West, The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials 32, 5782–9 (2011a)

    Article  Google Scholar 

  • J.E. Leslie-Barbick, C. Shen, C. Chen, J.L. West, Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng. Part A 17, 221–9 (2011b)

    Article  Google Scholar 

  • L.F. Mendes, R.P. Pirraco, W. Szymczyk, A.M. Frias, T.C. Santos, R.L. Reis, A.P. Marques, Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS One 7, e41051 (2012)

    Article  Google Scholar 

  • J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.H.T. Nguyen, D.M. Cohen, E. Toro, A.A. Chen, P.A. Galie, X. Yu, R. Chaturvedi, S.N. Bhatia, C.S. Chen, Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–74 (2012)

    Article  Google Scholar 

  • M.N. Nakatsu, R.C.A. Sainson, J.N. Aoto, K.L. Taylor, M. Aitkenhead, S. Pérez-del-Pulgar, P.M. Carpenter, C.C.W. Hughes, Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res. 66, 102–12 (2003)

    Article  Google Scholar 

  • J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini, Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–44 (2010)

    Article  Google Scholar 

  • E.C. Novosel, C. Kleinhans, P.J. Kluger, Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300–11 (2011)

    Article  Google Scholar 

  • A. Paul, A. Hasan, H.A. Kindi, A.K. Gaharwar, V.T.S. Rao, M. Nikkhah, S.R. Shin, D. Krafft, M.R. Dokmeci, D. Shum-Tim, A. Khademhosseini, Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8, 8050–62 (2014)

    Article  Google Scholar 

  • G.M. Price, K.H.K. Wong, J.G. Truslow, A.D. Leung, C. Acharya, J. Tien, Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31, 6182–9 (2010)

    Article  Google Scholar 

  • A. Ratcliffe, Tissue engineering of vascular grafts. Matrix Biol. 19, 353–7 (2000)

    Article  Google Scholar 

  • N. Sadr, M. Zhu, T. Osaki, T. Kakegawa, Y. Yang, M. Moretti, J. Fukuda, A. Khademhosseini, SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 32, 7479–90 (2011)

    Article  Google Scholar 

  • J.E. Saik, M.K. McHale, J.L. West, Biofunctional materials for directing vascular development. Curr. Vasc. Pharmacol. 10, 331–41 (2012)

    Article  Google Scholar 

  • A. Shamloo, S.C. Heilshorn, Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip - Miniaturisation Chem. Biol. 10, 3061–8 (2010)

    Article  Google Scholar 

  • A. Shamloo, H. Xu, S. Heilshorn, Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials. Tissue Eng. Part A 18, 320–30 (2012)

    Article  Google Scholar 

  • R. Sudo, S. Chung, I.K. Zervantonakis, V. Vickerman, Y. Toshimitsu, L.G. Griffith, R.D. Kamm, Transport-mediated angiogenesis in 3D epithelial coculture. Faseb. J. 23, 2155–64 (2009)

    Article  Google Scholar 

  • J.V. Tu, C.L. Pashos, C.D. Naylor, E. Chen, S.-L. Normand, J.P. Newhouse, B.J. McNeil, Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the united states and Canada. N. Engl. J. Med. 336, 1500–5 (1997)

    Article  Google Scholar 

  • A.I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E.H. Schacht, M. Cornelissen, H. Berghmans, Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31–8 (2000)

    Article  Google Scholar 

  • K.H.K. Wong, J.G. Truslow, J. Tien, The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31, 4706–14 (2010)

    Article  Google Scholar 

  • J.H. Yeon, H.R. Ryu, M. Chung, Q.P. Hu, N.L. Jeon, In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12, 2815–22 (2012)

    Article  Google Scholar 

  • H. Yoshida, M. Matsusaki, M. Akashi, Multilayered blood capillary analogs in biodegradable hydrogels for in vitro drug permeability assays. Adv. Funct. Mater. 23, 1736–42 (2012)

    Article  Google Scholar 

  • W.W. Yuen, N.R. Du, C.H. Chan, E.A. Silva, D.J. Mooney, Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc. Natl. Acad. Sci. U. S. A. 107, 17933–8 (2010)

    Article  Google Scholar 

  • Y. Zheng, J. Chen, M. Craven, N.W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J.A. López, A.D. Stroock, In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. U. S. A. 109, 9342–7 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Anwarul Hasan acknowledges the startup grant and the URB (University Research Board) grant from American University of Beirut, Lebanon, and the CNRS (National Council for Scientific Research) grant, Lebanon. Ali Khademhosseini acknowledges funding from the National Science Foundation (EFRI-1240443), IMMODGEL (602694), and the National Institutes of Health (EB012597, AR057837, DE021468, HL099073, AI105024, AR063745). The authors acknowledge the assistance from Gi Seok Jeong in drawing/editing a part of Fig. 1, and scientific/technical discussions with Joe Tien from Boston University. Arghya Paul likes to acknowledge the Institutional Development Award (IDeA) from the National Institute of General Medical Sciences, National Institutes of Health (NIH), under Award Number P20GM103638-04. Adnan Memic and Ali Khademhosseini would like to thank the National Plan for Science, Technology and Innovation (MAARIFAH) by King Abdulaziz City for Science and Technology, Grant No. 12-MED3096-3 for their support and funding of this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anwarul Hasan or Ali Khademhosseini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

FIG. S1

Optimization of GelMA concentration for fabrication of blood vessel-like structures: phase contrast images showing smoothness of the tube surface at different concentrations of GelMA. At (a) 4 % and (b) 8 % concentrations, the surface of the lumen got ruptured during the retrieval of the needle after gel formation. At (c) 12 % and higher concentrations the gels were strong enough to retain their structures and resulted in smooth channels. i.e., stiffer GlelMA resulted in smoother channel compared to low concentration GelMA. Scale bar = 200 μm. (DOCX 110 kb)

FIG. S2

Optimization of mechanical properties of fabricated blood vessel-like structures was performed using uniaxial compressive mechanical test on fabricated cell laden monolayer blood vessel-like structures, (a) schematic and dimension of the constructs for mechanical test, (b) stress–strain graph, (c) compressive modulus, (d) failure stress and (e) failure strain for vessels of different GelMA concentrations. The compressive modulus and failure stress of the constructs increased while the failure strain decreased with increase in GelMA concentration. (DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, A., Paul, A., Memic, A. et al. A multilayered microfluidic blood vessel-like structure. Biomed Microdevices 17, 88 (2015). https://doi.org/10.1007/s10544-015-9993-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9993-2

Keywords

Navigation