Skip to main content

Advertisement

Log in

Critical Evaluation of Scalar Roughness Length Parametrizations Over a Melting Valley Glacier

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We present a field investigation over a melting valley glacier on the Tibetan Plateau. In the ablation zone, aerodynamic roughness lengths (z 0M ) vary on the order of 10−4–10−2 m, whose evolution corresponds to three melt phases with distinct surface cover and moisture exchange: snow (sublimation/evaporation), bare ice (deposition/condensation), and ice hummocks (sublimation/evaporation). Bowen-ratio similarity is validated in the stably stratified katabatic winds, which suggests a useful means for data quality check. A roughness sublayer is regarded as irrelevant to the present ablation season, because selected characteristics of scalar turbulence over smooth snow are quite similar to those over hummocky ice. We evaluate three parametrizations of the scalar roughness lengths (z 0T for temperature and z 0q for humidity), viz. key factors for the accurate estimation of sensible heat and latent heat fluxes using the bulk aerodynamic method. The first approach is based on surface-renewal models and has been widely applied in glaciated areas; the second has never received application over an ice/snow surface, despite its validity in (semi-)arid regions; the third, a derivative of the first, is proposed for use specifically over rough ice defined as z 0M > 10−3 m or so. This empirical z 0M threshold value is deemed of general relevance to glaciated areas (e.g. ice sheet/cap and valley/outlet glaciers), above which the first approach gives notably underestimated z 0T,q . The first and the third approaches tend to underestimate and overestimate turbulent heat/moisture exchange, respectively, frequently leading to relative errors higher than 30%. Comparatively, the second approach produces fairly low errors in energy flux estimates both in individual melt phases and over the whole ablation season; it thus emerges as a practically useful choice to parametrize z 0T,q in glaciated areas. Moreover, we find all three candidate parametrizations unable to predict diurnal variations in the excess resistances to humidity transfer, thus encouraging more efforts for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson PS, Neff WD (2008) Boundary layer physics over snow and ice. Atmos Chem Phys 8: 3563–3582

    Article  Google Scholar 

  • Andreas EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol 38: 159–184

    Article  Google Scholar 

  • Andreas EL (2002) Parameterizing scalar transfer over snow and ice: a review. J Hydrometeorol 3: 417–432

    Article  Google Scholar 

  • Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2004) Roughness lengths over snow. In: Proceedings of 84th AMS annual meeting, paper JP4.31, Seattle, WA, USA, 8 pp

  • Andreas EL, Jordan RE, Makshtas AP (2005a) Parameterizing turbulent exchange over sea ice: the Ice Station Weddell results. Boundary-Layer Meteorol 114: 439–460

    Article  Google Scholar 

  • Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2005b) Parameterizing the turbulent surface fluxes over summer sea ice. In: Proceedings of 85th AMS annual meeting, paper J1.15, San Diego, CA, USA, 9 pp

  • Andreas EL, Horst TW, Grachev AA, Persson POG, Fairall CW, Guest PS, Jordan RE (2010a) Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Q J Roy Meteorol Soc 136: 927–943

    Article  Google Scholar 

  • Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2010b) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11: 87–104

    Article  Google Scholar 

  • Andreassen LM, van den Broeke MR, Giesen RH, Oerlemans J (2008) A 5 year record of surface energy and mass balance from the ablation zone of Storbreen, Norway. J Glaciol 54: 245–258

    Article  Google Scholar 

  • Basu S, Ruiz-Columbié A, Phillipson JA, Harshan S (2010) Local scaling characteristics of Antarctic surface layer turbulence. Cryosphere 4: 325–331

    Article  Google Scholar 

  • Bintanja R (1995) The local surface energy balance of the Ecology Glacier, King George Island, Antarctica: measurements and modelling. Antarct Sci 7: 315–325

    Article  Google Scholar 

  • Bintanja R, van den Broeke MR (1995) Momentum and scalar transfer coefficients over aerodynamically smooth Antarctic surfaces. Boundary-Layer Meteorol 74: 89–111

    Article  Google Scholar 

  • Brock BW, Willis IC, Sharp MJ (2006) Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland. J Glaciol 52: 281–297

    Article  Google Scholar 

  • Brunke MA, Zhou M, Zeng X, Andreas EL (2006) An intercomparison of bulk aerodynamic algorithms used over sea ice with data from the Surface Heat Budget for the Arctic Ocean (SHEBA) experiment. J Geophys Res 111: C09001. doi:10.1029/2005JC002907

    Article  Google Scholar 

  • Cassano JJ, Parish TR, King JC (2001) Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica. Mon Weather Rev 129: 26–46

    Article  Google Scholar 

  • Chen Y, Yang K, Zhou D, Qin J, Guo X (2010) Improving Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J Hydrometeorol 11: 995–1006

    Article  Google Scholar 

  • Chiba O, Kobayashi S (1986) A study of the structure of low-level katabatic winds at Mizuho Station, East Antarctica. Boundary-Layer Meteorol 37: 343–355

    Article  Google Scholar 

  • Clifton A, Manes C, J-D Rüedi, Guala M, Lehning M (2008) On shear-driven ventilation of snow. Boundary-Layer Meteorol 126: 249–261

    Article  Google Scholar 

  • Davidson PA (2004) Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford, p 657

    Google Scholar 

  • Denby B, Greuell W (2000) The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J Glaciol 46: 445–452

    Article  Google Scholar 

  • Denby B, Snellen H (2002) A comparison of surface renewal theory with the observed roughness length for temperature on a melting glacier surface. Boundary-Layer Meteorol 103: 459–468

    Article  Google Scholar 

  • DeWalle DR, Rango A (2008) Principles of snow hydrology. Cambridge University Press, Cambridge, p 403

    Book  Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Heidelberg, p 308

    Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208

    Google Scholar 

  • Forrer J, Rotach MW (1997) On the turbulence structure in the stable boundary layer over the Greenland ice sheet. Boundary-Layer Meteorol 85: 111–136

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 316

    Google Scholar 

  • Giesen RH, van den Broeke MR, Oerlemans J, Andreassen LM (2008) Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds. J Geophys Res 113: D21111. doi:10.1029/2008JD010390

    Article  Google Scholar 

  • Giesen RH, Andreassen LM, van den Broeke MR, Oerlemans J (2009) Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway. Cryosphere 3: 57–74

    Article  Google Scholar 

  • Greuell W, Genthon C (2004) Modelling land-ice surface mass balance. In: Bamber JL, Payne AJ (eds) Mass balance of the cryosphere: observations and modelling of contemporary and future changes. Cambridge University Press, Cambridge, pp 117–168

    Chapter  Google Scholar 

  • Haverd V, Böhm M, Raupach MR (2010) The effect of source distribution on bulk scalar transfer between a rough land surface and the atmosphere. Boundary-Layer Meteorol 135: 351–368

    Article  Google Scholar 

  • Heinemann G (2004) Local similarity properties of the continuously turbulent stable boundary layer over Greenland. Boundary-Layer Meteorol 112: 283–305

    Article  Google Scholar 

  • Heinemann G (2008) The polar regions: a natural laboratory for boundary layer meteorology—a review. Meteorol Z 17: 589–601

    Article  Google Scholar 

  • Hock R (2005) Glacier melt: a review of processes and their modelling. Prog Phys Geogr 29: 362–391

    Article  Google Scholar 

  • Holtslag AAM, de Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27: 689–704

    Article  Google Scholar 

  • Hudson SR, Brandt RE (2005) A look at the surface-based temperature inversion on the Antarctic plateau. J Clim 18: 1673–1696

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Cambridge University Press, Cambridge, p 289

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J Roy Meteorol Soc 98: 563–589

    Article  Google Scholar 

  • King JC (1990) Some measurements of turbulence over an Antarctic ice shelf. Q J Roy Meteorol Soc 116: 379–400

    Article  Google Scholar 

  • King JC, Argentini SA, Anderson PS (2006) Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica. J Geophys Res 111: D02105. doi:10.1029/2005JD006130

    Article  Google Scholar 

  • Klok EJ, Nolan M, van den Broeke MR (2005) Analysis of meteorological data and the surface energy balance of McCall Glacier, Alaska, USA. J Glaciol 51: 451–461

    Article  Google Scholar 

  • Konya K, Matsumoto T (2010) Influence of weather conditions and spatial variability on glacier surface melt in Chilean Patagonia. Theor Appl Climatol 102: 139–149

    Article  Google Scholar 

  • Lee X, Finnigan J, Paw U KT (2004) Coordinate systems and flux bias error. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 33–66

    Google Scholar 

  • Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol 109: 99–106

    Article  Google Scholar 

  • Liebethal C, Foken T (2004) On the significance of the Webb correction to fluxes: corrigendum. Boundary-Layer Meteorol 113: 301

    Article  Google Scholar 

  • Ma Y, Menenti M, Feddes R, Wang J (2008) Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths. J Geophys Res 113: D08113. doi:10.1029/2007JD009124

    Article  Google Scholar 

  • Mahrt L (2010) Computing turbulent fluxes near the surface: needed improvements. Agric For Meteorol 150: 501–509

    Article  Google Scholar 

  • Manes C, Guala M, Löwe H, Bartlett S, Egli L, Lehning M (2008) Statistical properties of fresh snow roughness. Water Resour Res 44: W11407. doi:10.1029/2007WR006689

    Article  Google Scholar 

  • Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z 15: 597–609

    Article  Google Scholar 

  • McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43: 231–245

    Article  Google Scholar 

  • Meesters AGCA, Bink NJ, Vugts HF, Cannemeijer F, Henneken EAC (1997) Turbulence observations above a smooth melting surface on the Greenland ice sheet. Boundary-Layer Meteorol 85: 81–110

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37: 17–35

    Article  Google Scholar 

  • Munro DS (1989) Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation. J Glaciol 35: 343–348

    Google Scholar 

  • Munro DS (2006) Linking the weather to glacier hydrology and mass balance at Peyto glacier. In: Demuth MN, Munro DS, Young GT (eds) Peyto glacier: one century of science. National Hydrology Research Institute Science Report, vol 8, pp 135–178

  • Munro DS, Davies JA (1977) An experimental study of the glacier boundary layer over melting ice. J Glaciol 18: 425–436

    Google Scholar 

  • Munro DS, Davies JA (1978) On fitting the log-linear model to wind speed and temperature profiles over a melting glacier. Boundary-Layer Meteorol 15: 423–437

    Article  Google Scholar 

  • Oerlemans J (1998) The atmospheric boundary layer over melting glaciers. In: Holtslag AAM, Duynkerke PG (eds) Clear and cloudy boundary layers. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 129–153

    Google Scholar 

  • Oerlemans J (2000) Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance. J Glaciol 46: 571–579

    Article  Google Scholar 

  • Oerlemans J (2001) Glaciers and climate change. A.A. Balkema Publishers, Rotterdam, p 148

    Google Scholar 

  • Oerlemans J (2010) The microclimate of valley glaciers. Utrecht Publishing & Archiving Services (Utrecht University), Igitur, 138 pp

  • Oerlemans J, Grisogono B (2002) Glacier winds and parameterisation of the related surface heat fluxes. Tellus A 54: 440–452

    Article  Google Scholar 

  • Oerlemans J, Klok EJ (2002) Energy balance of a glacier surface: analysis of automatic weather station data from the Morteratschgletscher, Switzerland. Arct Antarct Alp Res 34: 477–485

    Article  Google Scholar 

  • Oerlemans J, Björnsson H, Kuhn M, Obleitner F, Palsson F, Smeets CJPP, Vugts HF, De Wolde J (1999) Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996: an overview. Boundary-Layer Meteorol 92: 3–26

    Article  Google Scholar 

  • Parish TR, Cassano JJ (2003) The role of katabatic winds on the Antarctic surface wind regime. Mon Weather Rev 131: 317–333

    Article  Google Scholar 

  • Parmhed O, Oerlemans J, Grisogono B (2004) Describing surface fluxes in katabatic flow on Breidame- rkurjökull, Iceland. Q J Roy Meteorol Soc 130: 1137–1151

    Article  Google Scholar 

  • Pasricha PK, Singh R, Sarkar SK, Dutta HN, Reddy BM, Das PK (1991) Characteristics of atmospheric turbulence in the surface layer over Antarctica. Boundary-Layer Meteorol 57: 207–217

    Article  Google Scholar 

  • Roth M, Oke TR (1995) Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface. J Atmos Sci 52: 1863–1874

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol 26: 81–93

    Article  Google Scholar 

  • Singh P, Singh VP (2001) Snow and glacier hydrology. Kluwer, Dordrecht, p 742

    Google Scholar 

  • Smeets CJPP, Duynkerke PG, Vugts HF (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: A combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87: 117–145

    Article  Google Scholar 

  • Smeets CJPP, Duynkerke PG, Vugts HF (1999) Observed wind profiles and turbulence fluxes over an ice surface with changing surface roughness. Boundary-Layer Meteorol 92: 101–123

    Article  Google Scholar 

  • Smeets CJPP, Duynkerke PG, Vugts HF (2000) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part II: Pure katabatic forcing conditions. Boundary-Layer Meteorol 97: 73–107

    Article  Google Scholar 

  • Smeets CJPP, van den Broeke MR (2008a) Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland ice sheet. Boundary-Layer Meteorol 128: 315–338

    Article  Google Scholar 

  • Smeets CJPP, van den Broeke MR (2008b) The parameterisation of scalar transfer over rough ice. Boundary-Layer Meteorol 128: 339–355

    Article  Google Scholar 

  • Stössel F, Guala M, Fierz C, Manes C, Lehning M (2010) Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover. Water Resour Res 46: W04511. doi:10.1029/2009WR008198

    Article  Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, p 297

    Google Scholar 

  • Su Z, Schmugge T, Kustas WP, Massman WJ (2001) An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J Appl Meteorol 40: 1933–1951

    Article  Google Scholar 

  • Sun J (1999) Diurnal variations of thermal roughness height over a grassland. Boundary-Layer Meteorol 92: 407–427

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, Cambridge, p 429

    Google Scholar 

  • Tsonis AA (2002) An introduction to atmospheric thermodynamics. Cambridge University Press, Cambridge, p 182

    Google Scholar 

  • van den Broeke MR (1997a) Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer. J Appl Meteorol 36: 763–774

    Article  Google Scholar 

  • van den Broeke MR (1997b) Structure and diurnal variation of the atmospheric boundary layer over a mid-latitude glacier in summer. Boundary-Layer Meteorol 83: 183–205

    Article  Google Scholar 

  • van den Broeke M, Reijmer C, van As D, Boot W (2006) Daily cycle of the surface energy balance in Antarctica and the influence of clouds. Int J Climatol 26: 1587–1605

    Article  Google Scholar 

  • van den Broeke M, Smeets P, Ettema J, van der Veen C, van de Wal R, Oerlemans J (2008) Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere 2: 179–189

    Article  Google Scholar 

  • van den Broeke M, Smeets P, Ettema J (2009) Surface layer climate and turbulent exchange in the ablation zone of the west Greenland ice sheet. Int J Climatol 29: 2309–2323

    Article  Google Scholar 

  • van der Avoird E, Duynkerke PG (1999) Turbulence in a katabatic flow: does it resemble turbulence in stable boundary layers over flat surfaces. Boundary-Layer Meteorol 92: 39–66

    Google Scholar 

  • Verhoef A, De Bruin HAR, van den Hurk BJJM (1997) Some practical notes on the parameter kB −1 for sparse vegetation. J Appl Meteorol 36: 560–572

    Article  Google Scholar 

  • Vihma T, Launiainen J, Pirazzini R (2009) 20 Years of Finnish research on boundary-layer meteorology and air–ice–sea interaction in the Antarctic. Geophysica 45: 7–26

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteorol Soc 106: 85–100

    Article  Google Scholar 

  • Weber M (2007) A parameterization for the turbulent fluxes over melting surfaces derived from eddy correlation measurements. In: Proceedings of Alpine-snow-workshop, Nationalpark Berchtesgaden, Munich, Germany, pp 138–149

  • Xu B-Q, Wang M, Joswiak DR, Cao J-J, Yao T-D, Wu G-J, Yang W, Zhao H-B (2009) Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. J Geophys Res 114: D17209. doi:10.1029/2008JD011510

    Article  Google Scholar 

  • Yang K, Koike T, Fujii H, Tamagawa K, Hirose N (2002) Improvement of surface flux parameterizations with a turbulence-related length. Q J Roy Meteorol Soc 128: 2073–2087

    Article  Google Scholar 

  • Yang K, Koike T, Yang D (2003) Surface flux parameterization in the Tibetan Plateau. Boundary-Layer Meteorol 106: 245–262

    Article  Google Scholar 

  • Yang K, Koike T, Ishikawa H, Kim J, Li X, Wang J, Liu H, Liu S, Ma Y (2008) Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization. J Appl Meteorol Climatol 47: 276–290

    Article  Google Scholar 

  • Yang K, Qin J, Guo X, Zhou D, Ma Y (2009) Method development for estimating sensible heat flux over the Tibetan Plateau from CMA data. J Appl Meteorol Climatol 48: 2474–2486

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Yang, K., Zhao, L. et al. Critical Evaluation of Scalar Roughness Length Parametrizations Over a Melting Valley Glacier. Boundary-Layer Meteorol 139, 307–332 (2011). https://doi.org/10.1007/s10546-010-9586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9586-9

Keywords

Navigation