Skip to main content
Log in

A Numerical Study of Sea-Fog Formation over Cold Sea Surface Using a One-Dimensional Turbulence Model Coupled with the Weather Research and Forecasting Model

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The formation mechanism of a cold sea-fog case observed over the Yellow Sea near the western coastal area of the Korean Peninsula is investigated using numerical simulation with a one-dimensional turbulence model coupled with a three-dimensional regional model. The simulation was carried out using both Eulerian and Lagrangian approaches; both approaches produced sea fog in a manner consistent with observation. For the selected cold sea-fog case, the model results suggested the following: as warm and moist air flows over a cold sea surface, the lower part of the air column is modified by the turbulent exchange of heat and moisture and the diurnal variation in radiation. The modified boundary-layer structure represents a typical stable thermally internal boundary layer. Within the stable thermally internal boundary layer, the air temperature is decreased by radiative cooling and turbulent heat exchange but the moisture loss due to the downward vapour flux in the lowest part of the air column is compensated by moisture advection and therefore the dewpoint temperature does not decrease as rapidly as does the air temperature. Eventually water vapour saturation is achieved and the cold sea fog forms in the thermal internal boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard SP, Golding BW, Smith RNB (1991) Mesoscale model experimental forecasts of the haar of northeast Scotland. Mon Wea Rev 119(9): 2107–2123

    Article  Google Scholar 

  • Bendix J, Thies B, Nauß T, Cermak J (2006) A feasibility study of daytime fog and low stratus detection with TERRA/AQUA-MODIS over land, vol 13. Wiley, New York. doi:10.1017/s1350482706002180

    Google Scholar 

  • Bergot T, Guedalia D (1994) Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon Wea Rev 122(6): 1218–1230

    Article  Google Scholar 

  • Bergot T, Terradellas E, Cuxart J, Mira A, Liechti O, Mueller M, Nielsen NW (2007) Intercomparison of single-column numerical models for the prediction of radiation fog. J Appl Meteorol Climatol 46(4): 504–521

    Article  Google Scholar 

  • Bott A, Trautmann T (2002) PAFOG—a new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos Res 64(1–4): 191–203

    Article  Google Scholar 

  • Bott A, Sievers U, Zdunkowski W (1990) A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. J Atmos Sci 47(18): 2153–2166

    Article  Google Scholar 

  • Boutle I, Beare R, Belcher S, Brown A, Plant R (2010) The moist boundary layer under a mid-latitude weather system. Boundary-Layer Meteorol 134(3): 367–386

    Article  Google Scholar 

  • Brown R, Roach WT (1976) The physics of radiation fog: II—a numerical study. Q J Roy Meteorol Soc 102(432): 335–354

    Google Scholar 

  • Chaumerliac N, Richard E, Pinty JP, Nickerson EC (1987) Sulfur scavenging in a mesoscale model with quasi-spectral microphysics: two-dimensional results for continental and maritime clouds. J Geophys Res 92(D3): 3114–3126. doi:10.1029/JD092iD03p03114

    Article  Google Scholar 

  • Choi H, Speer MS (2006) The influence of synoptic-mesoscale winds and sea surface temperature distribution on fog formation near the Korean western peninsula. Meteorol Appl 13(4): 347–360

    Article  Google Scholar 

  • Croft PJ, Darbe DL, Garmon JF (1995) Forecasting significant fog in southern Alabama. Natl Wea Dig 19(4): 10–16

    Google Scholar 

  • Douglas C (1930) Cold fogs over the sea. Meteorol Mag 65: 133–135

    Google Scholar 

  • Duynkerke PG (1991) Radiation fog: a comparison of model simulation with detailed observations. Mon Wea Rev 119(2): 324–341

    Article  Google Scholar 

  • Duynkerke PG (1999) Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorol 90(3): 447–477

    Article  Google Scholar 

  • Ellrod GP (1995) Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea Forecast 10(3): 606–619

    Article  Google Scholar 

  • Findlater J, Roach WT, McHugh BC (1989) The haar of north-east Scotland. Q J Roy Meteorol Soc 115(487): 581–608

    Article  Google Scholar 

  • Fu G, Zhang M, Duan Y, Zhang T, Wang J (2004) Characteristics of sea fog over the Yellow Sea and the East China Sea. Kaiyo Mon 38: 99–107

    Google Scholar 

  • Fu G, Guo JT, Xie SP, Duane YH, Zhang MG (2006) Analysis and high-resolution modeling of a dense sea fog event over the Yellow Sea. Atmos Res 81(4): 293–303

    Article  Google Scholar 

  • Gao SH, Lin H, Shen B, Fu G (2007) A heavy sea fog event over the Yellow Sea in March 2005: analysis and numerical modeling. Adv Atmos Sci 24(1): 65–81

    Article  Google Scholar 

  • Garratt JR (1987) The stably stratified internal boundary layer for steady and diurnally varying offshore flow. Boundary-Layer Meteorol 38: 369–394

    Article  Google Scholar 

  • Holtslag AAM, De Bruijn EIF, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Wea Rev 118(8): 1561–1575

    Article  Google Scholar 

  • Inoue T, Kamahori H (2001) Statistical relationship between ISCCP cloud type and vertical relative humidity profile. J Meteorol Soc Jpn 79(6): 1243–1256

    Article  Google Scholar 

  • Johnson GA, Graschel J (1992) Sea fog and stratus: a major aviation and marine hazard in the northern Gulf of Mexico. In: Symposium on weather forecasting, Atlanta, GA. American Meteorological Society, pp 55–60

  • Kim CK, Yum SS (2010) Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Adv Atmos Sci 27(4): 761–776

    Article  Google Scholar 

  • Kim CK, Yum SS (2011) Marine boundary layer structure for the sea fog formation off the west coast of the Korean Peninsula. Pure Appl Geophys. doi:10.1007/s00024-011-0325-z

  • Koracin D, Lewis J, Thompson WT, Dorman CE, Businger JA (2001) Transition of stratus into fog along the California coast: observations and modeling. J Atmos Sci 58(13): 1714–1731

    Article  Google Scholar 

  • Koracin D, Businger J, Dorman C, Lewis J (2005) Formation, evolution, and dissipation of coastal sea fog. Boundary-Layer Meteorol 117(3): 447–478

    Article  Google Scholar 

  • Leigh RJ (1995) Economic benefits of terminal aerodrome forecasts (TAFs) for Sydney airport, Australia, vol 2. Wiley, New York. doi:10.1002/met.5060020307

    Google Scholar 

  • Lewis J, Koracin D, Rabin R, Businger J (2003) Sea fog off the California coast: viewed in the context of transient weather systems. J Geophy Res 108(D15). doi:10.1029/2002jd002833|issn0747-7309

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31(7): 1791–1806

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4): 851–875

    Article  Google Scholar 

  • Müller MD, Schmutz C, Parlow E (2007) A one-dimensional ensemble forecast and assimilation system for fog prediction. Pure Appl Geophys 164(6): 1241–1264

    Article  Google Scholar 

  • Musson-Genon L (1987) Numerical simulation of a fog event with a one-dimensional boundary layer model. Mon Wea Rev 115(2): 592–607

    Article  Google Scholar 

  • Nicholls S, Leighton J (1986) An observational study of the structure of stratiform cloud sheets: part I. Structure. Q J Roy Meteorol Soc 112(472): 431–460

    Article  Google Scholar 

  • Nickerson EC, Richard E, Rosset R, Smith DR (1986) The numerical simulation of clouds, rains and airflow over the Vosges and Black forest mountains: a meso-β model with parameterized microphysics. Mon Wea Rev 114(2): 398–414

    Article  Google Scholar 

  • Pagowski M, Gultepe I, King P (2004) Analysis and modeling of an extremely dense fog event in southern Ontario. J Appl Meteorol 43(1): 3–16

    Article  Google Scholar 

  • Petterssen S (1938) On the causes and the forecasting of the California fog. Bull Am Meteorol Soc 19(2): 49–55

    Google Scholar 

  • Pilie RJ, Mack EJ, Rogers CW, Katz U, Kocmond WC (1979) The formation of marine fog and the development of fog-stratus systems along the California coast. J Appl Meteorol 18(10): 1275–1286

    Article  Google Scholar 

  • Pruppacher H, Klett J (1997) Microphysics of cloud and precipitation. Kluwer, Dordrecht, p 955

    Google Scholar 

  • Roach WT, Brown R, Caughey SJ, Garland JA, Readings CJ (1976) The physics of radiation fog: I—a field study. Q J Roy Meteorol Soc 102(432): 313–333

    Google Scholar 

  • Rossow WB, Walker AW, Garder LC (1993) Comparison of ISCCP and other cloud amounts. J Clim 6(12): 2394–2418

    Article  Google Scholar 

  • Ryznar E (1977) Advection-radiation fog near lake Michigan. Atmos Environ 11(5): 427–430

    Article  Google Scholar 

  • Sakakibara H (1979) A scheme for stable numerical computation of the condensation process with large time steps. J Meteorol Soc Jpn 57: 349–353

    Google Scholar 

  • Shi C, Wang L, Zhang H, Zhang S, Deng X, Li Y, Qiu M (2011) Fog simulations based on multi-model system: a feasibility study. Pure Appl Geophys. doi:10.1007/s00024-011-0340-0

  • Siebert J, Sievers U, Zdunkowski W (1992) A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Boundary-Layer Meteorol 59(1): 1–34

    Article  Google Scholar 

  • Skamarock WC et al (2008) A description of the advanced research WRF version 3. NCAR Tech Note NCAR/TN-475+STR, 113 pp

  • Sorli B, Pascal-Delannoy F, Giani A, Foucaran A, Boyer A (2002) Fast humidity sensor for high range 80–95% RH. Sens Actuators A 100(1): 24–31

    Article  Google Scholar 

  • Steeneveld GJ, Wokke MJJ, Groot Zwaaftink CD, Pijlman S, Heusinkveld BG, Jacobs AFG, Holtslag AAM (2010) Observations of the radiation divergence in the surface layer and its implication for its parameterization in numerical weather prediction models. J Geophys Res 115(D6): D06107. doi:10.1029/2009jd013074

    Article  Google Scholar 

  • Steeneveld GJ, Tolk LF, Moene AF, Hartogensis OK, Peters W, Holtslag AAM (2011) Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: evaluating the boundary layer heat budget. J Geophys Res 16:D23114. doi:10.1029/2011JD016303

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, p 666

    Google Scholar 

  • Tardif R (2007) The impact of vertical resolution in the explicit numerical forecasting of radiation fog: a case study. Pure Appl Geophys 164(6): 1221–1240

    Article  Google Scholar 

  • Taylor GI (1917) The formation of fog and mist. Q J Roy Meteorol Soc 43(183): 241–268

    Article  Google Scholar 

  • Thoma C, Schneider W, Rohn M, Rohner P, Beckmann B-R, Masbou M, Bott A (2010) Development of the one dimensional fog model PAFOG for operational use at Munich airport. In: The 5th international conference on fog, fog collection and dew, Munster, Germany. European Meteorological Society, p 34

  • Trement M (1989) The forecasting of sea fog. Meteorol Mag 118: 69–75

    Google Scholar 

  • Underwood SJ, Ellrod GP, Kuhnert AL (2004) A multiple-case analysis of nocturnal radiation-fog development in the central valley of California utilizing the GOES nighttime fog product. J Appl Meteorol 43(2): 297–311

    Article  Google Scholar 

  • van der Velde IR, Steeneveld GJ, Wichers Schreur BGJ, Holtslag AAM (2010) Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon Wea Rev 138(11): 4237–4253

    Article  Google Scholar 

  • Weare BC (1994) Interrelationships between cloud properties and sea surface temperatures on seasonal and interannual time scales. J Clim 7(2): 248–260

    Article  Google Scholar 

  • Wells WC (1814) Essay on dew, and several appearance connected with it. Taylor and Hessey, London

    Google Scholar 

  • Willett HC (1928) Fog and haze, their causes, distribution, and forecasting. Mon Wea Rev 56(11): 435–468

    Article  Google Scholar 

  • Yamanouchi T, Suzuki K, Kawaguchi S (1987) Detection of clouds in Antarctica from infrared multispectral data of AVHRR. J Meteorol Soc Jpn 65: 949–962

    Google Scholar 

  • Yum SS, Hudson JG, Song KY, Choi BC (2005) Springtime cloud condensation nuclei concentrations on the west coast of Korea. Geophy Res Lett 32(9). doi:10.1029/2005gl022641

  • Zdunkowski W, Panhans W-G, Welch RM, Korb GJ (1982) A radiation scheme for circulation and climate models. Contrib Atmos Phys 55: 215–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Soo Yum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.K., Yum, S.S. A Numerical Study of Sea-Fog Formation over Cold Sea Surface Using a One-Dimensional Turbulence Model Coupled with the Weather Research and Forecasting Model. Boundary-Layer Meteorol 143, 481–505 (2012). https://doi.org/10.1007/s10546-012-9706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9706-9

Keywords

Navigation