Skip to main content
Log in

Multi-Scale Sensible Heat Fluxes in the Suburban Environment from Large-Aperture Scintillometry and Eddy Covariance

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Sensible heat fluxes (\(Q_{H}\)) are determined using scintillometry and eddy covariance over a suburban area. Two large-aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2–4 \(\text {km}^{2}\), whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5–10 \(\text {km}^{2}\). These large-scale heat fluxes are compared with local-scale eddy-covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly \(Q_{H}\) is related to the meteorological conditions. At shorter time scales the response of \(Q_{H}\) to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (\(Q^{*}\)) coincide with greater differences between heat fluxes. For clear days \(Q_{H}\) lags \(Q^{*}\), thus the ratio of \(Q_{H}\) to \(Q^{*}\) increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Met Office climate statistics (1971–2000), http://www.metoffice.gov.uk/climate, last accessed 29 March 2013.

References

  • Andreas EL (1988) Estimating C\(_{n}^{2}\) over snow and sea ice from meteorological data. J Opt Soc Am 5:481–495

    Article  Google Scholar 

  • Andreas EL (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atmos Ocean Technol 6:280–292

    Article  Google Scholar 

  • Balogun A, Adegoke J, Vezhapparambu S, Mauder M, McFadden J, Gallo K (2009) Surface energy balance measurements above an exurban residential neighbourhood of Kansas City, Missouri. Boundary-Layer Meteorol 133:299–321

    Article  Google Scholar 

  • Bergeron O, Strachan IB (2010) Wintertime radiation and energy budget along an urbanization gradient in Montreal, Canada. Int J Climatol 32:137–152

    Article  Google Scholar 

  • Beyrich F, De Bruin HAR, Meijninger WML, Schipper JW, Lohse H (2002) Results from 1-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105:85–97

    Article  Google Scholar 

  • Beyrich F, Bange J, Hartogensis O, Raasch S, Braam M, van Dinther D, Gräf D, van Kesteren B, van den Kroonenberg A, Maronga B, Martin S, Moene A (2012) Towards a validation of scintillometer measurements: the LITFASS-2009 experiment. Boundary-Layer Meteorol 144:83–112

    Article  Google Scholar 

  • Braam M, Bosveld F, Moene A (2012) On Monin–Obukhov scaling in and above the atmospheric surface layer: the complexities of elevated scintillometer measurements. Boundary-Layer Meteorol 144:157–177

    Article  Google Scholar 

  • Chehbouni A, Watts C, Kerr YH, Dedieu G, Rodriguez JC, Santiago F, Cayrol P, Boulet G, Goodrich DC (2000a) Methods to aggregate turbulent fluxes over heterogeneous surfaces: application to SALSA data set in Mexico. Agric For Meteorol 105:133–144

    Article  Google Scholar 

  • Chehbouni A, Watts C, Lagouarde JP, Kerr YH, Rodriguez JC, Bonnefond JM, Santiago F, Dedieu G, Goodrich DC, Unkrich C (2000b) Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer. Agric For Meteorol 105:215–226

    Article  Google Scholar 

  • Cheinet S, Beljaars A, Weiss-Wrana K, Hurtaud Y (2011) The use of weather forecasts to characterise near-surface optical turbulence. Boundary-Layer Meteorol 138:453–473

    Article  Google Scholar 

  • Christen A, Vogt R (2004) Energy and radiation balance of a central European city. Int J Climatol 24:1395–1421

    Article  Google Scholar 

  • Clifford SF, Ochs GR, Lawrence RS (1974) Saturation of optical scintillation by strong turbulence. J Opt Soc Am 64:148–154

    Article  Google Scholar 

  • Coutts AM, Beringer J, Tapper NJ (2007) Impact of increasing urban density on local climate: spatial and temporal variations in the surface energy balance in Melbourne, Australia. J Appl Meteorol Climatol 46:477–493

    Article  Google Scholar 

  • De Bruin HAR, Kohsiek W, Van den Hurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water-vapour using standard-deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63:231–257

    Article  Google Scholar 

  • Detto M, Montaldo N, Albertson JD, Mancini M, Katul G (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour Res 42:16. doi:10.1029/2005wr004693

    Google Scholar 

  • Evans JG (2009) Long-path scintillometry over complex Terrain to determine areal-averaged sensible and latent heat fluxes. The University of Reading, PhD, Soil Science Department 181 pp

  • Evans JG, McNeil DD, Finch JW, Murray T, Harding RJ, Ward HC, Verhoef A (2012) Determination of turbulent heat fluxes using a large aperture scintillometer over undulating mixed agricultural terrain. Agric For Meteorol 166–167:221–233

    Article  Google Scholar 

  • Ezzahar J, Chehbouni A, Hoedjes JCB (2007) On the application of scintillometry over heterogeneous grids. J Hydrol 334:493–501

    Article  Google Scholar 

  • Frey CM, Parlow E, Vogt R, Harhash M, Abdel Wahab MM (2011) Flux measurements in Cairo. Part 1: in situ measurements and their applicability for comparison with satellite data. Int J Climatol 31:218–231

    Article  Google Scholar 

  • Garratt JR (1978) Transfer characteristics for a heterogeneous surface of large aerodynamic roughness. Q J R Meteorol Soc 104:491–502

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, UK, 316 pp

  • Goldbach A, Kuttler W (2013) Quantification of turbulent heat fluxes for adaptation strategies within urban planning. Int J Climatol 33:143–159

    Article  Google Scholar 

  • Gouvea ML, Grimmond CSB (2010) Spatially integrated measurements of sensible heat flux using scintillometry. Ninth Symposium on the Urban Environment, Keystone, Colorado, 2nd-6th August 2010

  • Green AE, Astill MS, McAneney KJ, Nieveen JP (2001) Path-averaged surface fluxes determined from infrared and microwave scintillometers. Agric For Meteorol 109:233–247

    Article  Google Scholar 

  • Grimmond CSB, Cleugh HA (1994) A simple method to determine Obukhov lengths for suburban areas. J Appl Meteorol 33:435–440

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1995) Comparison of heat fluxes from summertime observations in the suburbs of four north American cities. J Appl Meteorol 34:873–889

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (2002) Turbulent heat fluxes in urban areas: observations and a local-scale urban meteorological parameterization scheme (LUMPS). J Appl Meteorol 41:792–810

    Article  Google Scholar 

  • Grimmond CSB, Souch C, Hubble MD (1996) Influence of tree cover on summertime surface energy balance fluxes, San Gabriel Valley, Los Angeles. Climate Res 06:45–57

    Article  Google Scholar 

  • Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Boundary-Layer Meteorol 89:1–24

    Article  Google Scholar 

  • Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res (Atmos) 109:D24101. doi:10.1029/2004JD004936

    Article  Google Scholar 

  • Guyot A, Cohard J-M, Anquetin S, Galle S, Lloyd CR (2009) Combined analysis of energy and water balances to estimate latent heat flux of a Sudanian small catchment. J Hydrol 375:227–240

    Article  Google Scholar 

  • Hartogensis OK, Watts CJ, Rodriguez JC, De Bruin HAR (2003) Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J Hydrometerol 4:915–928

    Article  Google Scholar 

  • Hill RJ, Clifford SF, Lawrence RS (1980) Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations. J Opt Soc Am 70:1192–1205

    Article  Google Scholar 

  • Hill RJ, Bohlander RA, Clifford SF, McMillan RW, Priestly JT, Schoenfeld WP (1988) Turbulence-induced millimeter-wave scintillation compared with micrometeorological measurements. IEEE Trans Geosci Remote Sens 26:330–342

    Article  Google Scholar 

  • Hill RJ, Ochs GR, Wilson JJ (1992) Measuring surface-layer fluxes of heat and momentum using optical scintillation. Boundary-Layer Meteorol 58:391–408

    Article  Google Scholar 

  • Hiller RV, McFadden JP, Kljun N (2011) Interpreting CO\(_2\) fluxes over a suburban lawn: the influence of traffic emissions. Boundary-Layer Meteorol 138:215–230

    Article  Google Scholar 

  • Hoedjes JCB, Zuurbier RM, Watts CJ (2002) Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection. Boundary-Layer Meteorol 105:99–117

    Article  Google Scholar 

  • Hoedjes JCB, Chehbouni A, Ezzahar J, Escadafal R, De Bruin HAR (2007) Comparison of large aperture scintillometer and eddy covariance measurements: can thermal infrared data be used to capture footprint-induced differences? J Hydrometerol 8:144–159

    Article  Google Scholar 

  • Hsieh CI, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772

    Article  Google Scholar 

  • Järvi L, Rannik U, Mammarella I, Sogachev A, Aalto PP, Keronen P, Siivola E, Kulmala M, Vesala T (2009) Annual particle flux observations over a heterogeneous urban area. Atmos Chem Phys 9:7847–7856

    Article  Google Scholar 

  • Järvi L, Grimmond CSB, Christen A (2011) The surface urban energy and water balance scheme (SUEWS): evaluation in Los Angeles and Vancouver. J Hydrol 411:219–237

    Article  Google Scholar 

  • Järvi L, Nordbo A, Junninen H, Riikonen A, Moilanen J, Nikinmaa E, Vesala T (2012) Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010. Atmos Chem Phys 12:8475–8489

    Article  Google Scholar 

  • Kanda M, Moriwaki R, Roth M, Oke T (2002) Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Boundary-Layer Meteorol 105:177–193

    Article  Google Scholar 

  • Kawai T, Kanda M (2010) Urban energy balance obtained from the comprehensive outdoor scale model experiment. Part I: basic features of the surface energy balance. J Appl Meteorol Climatol 49:1341–1359

    Article  Google Scholar 

  • Keogh S, Mills G, Fealy R (2012) The energy budget of the urban surface: two locations in Dublin. Irish Geogr 45:1–23

    Article  Google Scholar 

  • Kleissl J, Gomez J, Hong SH, Hendrickx JMH, Rahn T, Defoor WL (2008) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128:133–150

    Article  Google Scholar 

  • Kleissl J, Hong SH, Hendrickx JMH (2009a) New Mexico scintillometer network supporting remote sensing and hydrologic and meteorological models. Bull Am Meteorol Soc 90:207–218

    Article  Google Scholar 

  • Kleissl J, Watts CJ, Rodriguez JC, Naif S, Vivoni ER (2009b) Scintillometer intercomparison study-continued. Boundary-Layer Meteorol 130:437–443

    Article  Google Scholar 

  • Kleissl J, Hartogensis O, Gomez J (2010) Test of scintillometer saturation correction methods using field experimental data. Boundary-Layer Meteorol 137:493–507

    Article  Google Scholar 

  • Kohsiek W, Herben MHAJ (1983) Evaporation derived from optical and radio-wave scintillation. Appl Opt 22:2566–2570

    Article  Google Scholar 

  • Kohsiek W, Meijninger WML, De Bruin HAR, Beyrich F (2006) Saturation of the large aperture scintillometer. Boundary-Layer Meteorol 121:111–126. doi:10.1007/s10546-005-9031-7

    Article  Google Scholar 

  • Kotthaus S, Grimmond CSB (2013a) Energy exchange in a dense urban environment—Part I: temporal variability of long-term observations in central London. Urban Clim. (in press) doi:10.1016/j.uclim.2013.10.002

  • Kotthaus S, Grimmond CSB (2013b) Energy exchange in a dense urban environment—Part II: impact of spatial heterogeneity of the surface. Urban Clim. (in press) doi:10.1016/j.uclim.2013.10.001

  • Lagouarde JP, Irvine M, Bonnefond JM, Grimmond CSB, Long N, Oke TR, Salmond JA, Offerle B (2006) Monitoring the sensible heat flux over urban areas using large aperture scintillometry: case study of Marseille city during the ESCOMPTE experiment. Boundary-Layer Meteorol 118:449–476. doi:10.1007/s10546-005-9001-0

    Article  Google Scholar 

  • Lemonsu A, Grimmond CSB, Masson V (2004) Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. J Appl Meteorol 43:312–327

    Article  Google Scholar 

  • Liu SM, Xu ZW, Zhu ZL, Jia ZZ, Zhu MJ (2013) Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J Hydrol 487:24–38. doi:10.1016/j.jhydrol.2013.02.025

    Article  Google Scholar 

  • Loridan T, Grimmond CSB (2012) Characterization of energy flux partitioning in urban environments: links with surface seasonal properties. J Appl Meteorol Climatol 51:219–241. doi:10.1175/jamc-d-11-038.1

    Article  Google Scholar 

  • Maronga B, Raasch S (2013) Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Boundary-Layer Meteorol 146:17–44. doi:10.1007/s10546-012-9748-z

    Article  Google Scholar 

  • Maronga B, Moene AF, Dinther D, Raasch S, Bosveld FC, Gioli B (2013) Derivation of structure parameters of temperature and humidity in the convective boundary layer from large-eddy simulations and implications for the interpretation of scintillometer observations. Boundary-Layer Meteorol 148:1–30. doi:10.1007/s10546-013-9801-6

    Article  Google Scholar 

  • Meijninger WML, De Bruin HAR (2000) The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer. J Hydrol 229:42–49

    Article  Google Scholar 

  • Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002a) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorol 105:63–83

    Article  Google Scholar 

  • Meijninger WML, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002b) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorol 105:37–62

    Article  Google Scholar 

  • Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, De Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121:89–110

    Article  Google Scholar 

  • Mestayer P, Bagga I, Calmet I, Fontanilles G, Gaudin D, Lee JH, Piquet T, Rosant J-M, Chancibault K, Lebouc L, Letellier L, Mosini M-L, Rodriguez F, Rouaud J-M, Sabre M, Tétard Y, Brut A, Selves J-L, Solignac P-A, Brunet Y, Dayau S, Irvine M, Lagouarde J-P, Kassouk Z, Launeau P, Connan O, Defenouillère P, Goriaux M, Hébert D, Letellier B, Mario D, Najjar G, Nerry F, Quentin C, Biron R, Cohard J-M, Galvez J, Klein P (2011) The FluxSAP 2010 hydroclimatological experimental campaign over an heterogeneous urban area. 11th EMS Annual Meeting, Berlin, Germany, 12th–16th Sep 2011

  • Moene AF (2003) Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorol 107:635–653

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2004) Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J Appl Meteorol 43:1700–1710

    Article  Google Scholar 

  • Mustchin J, Pauscher L, Ward HC, Kotthaus S, Gouvea M, Morrison W, Grimmond CSB (2013) Comparison of three large aperture scintillometer models over London. Tübingen Atmospheric Physics Symposium “Scintillometers and Applications”, Tübingen, Germany, 7th–9th Oct 2013

  • Nordbo A, Järvi L, Haapanala S, Moilanen J, Vesala T (2013) Intra-City variation in urban morphology and turbulence structure in Helsinki, Finland. Boundary-Layer Meteorol 146:469–496

    Article  Google Scholar 

  • Offerle B, Grimmond CSB, Fortuniak K (2005) Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. Int J Climatol 25:1405–1419

    Article  Google Scholar 

  • Offerle B, Grimmond CSB, Fortuniak K, Pawlak W (2006) Intraurban differences of surface energy fluxes in a central European city. J Appl Meteorol Climatol 45:125–136

    Article  Google Scholar 

  • Oke TR, Cleugh HA (1987) Urban heat storage derived as energy balance residuals. Boundary-Layer Meteorol 39:233–245

    Article  Google Scholar 

  • Pasquill F (1974) Atmospheric diffusion. Wiley, New York, 429 pp

  • Pauscher L (2010) Scintillometer Measurements above the urban area of London. University of Bayreuth, Diploma, Department of Micrometeorology 104 pp

  • Roberts SM, Oke TR, Grimmond CSB, Voogt JA (2006) Comparison of four methods to estimate urban heat storage. J Appl Meteorol Climatol 45:1766–1781

    Article  Google Scholar 

  • Roth M, Salmond JA, Satyanarayana ANV (2006) Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: The role of scintillometery. Boundary-Layer Meteorol 121:351–375

    Article  Google Scholar 

  • Samain B, Ferket BVA, Defloor W, Pauwels VRN (2011a) Estimation of catchment averaged sensible heat fluxes using a large aperture scintillometer. Water Resour Res 47:W05536

    Google Scholar 

  • Samain B, Simons GWH, Voogt MP, Defloor W, Bink N-J, Pauwels VRN (2011b) Consistency between hydrological model, large aperture scintillometer and remote sensing based evapotranspiration estimates for a heterogeneous catchment. Hydrol Earth Syst Sci 8:10863–10894

    Article  Google Scholar 

  • Samain B, Defloor W, Pauwels VRN (2012) Continuous time series of catchment-averaged sensible heat flux from a large aperture scintillometer: efficient estimation of stability conditions and importance of fluxes under stable conditions. J Hydrometerol 13:423–442

    Article  Google Scholar 

  • Schmid HP (1994) Source areas for scalars and scalar fluxes. Boundary-Layer Meteorol 67:293–318

    Article  Google Scholar 

  • Schmid HP, Cleugh HA, Grimmond CSB, Oke TR (1991) Spatial variability of energy fluxes in suburban terrain. Boundary-Layer Meteorol 54:249–276

    Article  Google Scholar 

  • Steeneveld GJ, Tolk LF, Moene AF, Hartogensis OK, Peters W, Holtslag AAM (2011) Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: evaluating the boundary layer heat budget. J Geophys Res (Atmos) 116:D23114

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

  • Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol 58:367–389

    Article  Google Scholar 

  • Van Kesteren B, Hartogensis O (2011) Analysis of the systematic errors found in the Kipp & Zonen large-aperture scintillometer. Boundary-Layer Meteorol 138:493–509

    Article  Google Scholar 

  • Vesala T, Järvi L, Launiainen S, Sogachev A, Rannik Ü, Mammarella I, Siivola E, Keronen P, Rinne J, Riikonen ANU, Nikinmaa E (2008) Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 60:188–199

    Article  Google Scholar 

  • Ward HC, Evans JG, Grimmond CSB (2013a) Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK. Atmos Chem Phys 13:4645–4666

    Article  Google Scholar 

  • Ward HC, Evans JG, Hartogensis OK, Moene AF, De Bruin HAR, Grimmond CSB (2013b) A critical revision of the estimation of the latent heat flux from two-wavelength scintillometry. Q J R Meteorol Soc 139:1912–1922

    Article  Google Scholar 

  • Weber S, Kordowski K (2010) Comparison of atmospheric turbulence characteristics and turbulent fluxes from two urban sites in Essen, Germany. Theor Appl Climatol 102:61–74

    Article  Google Scholar 

  • Wesely ML (1976) Combined effect of temperature and humidity fluctuations on refractive-index. J Appl Meteorol 15:43–49

    Article  Google Scholar 

  • Wood CR, Järvi L (2012) An overview of urban climate observations in Helsinki. Mag Finnish Air Pollut Prev Soc 30–33

  • Wood CR, Kouznetsov RD, Gierens R, Nordbo A, Järvi L, Kallistratova MA, Kukkonen J (2013) On the temperature structure parameter and sensible heat flux over Helsinki from sonic anemometry and scintillometry. J Atmos Ocean Technol 30:1604–1615

    Article  Google Scholar 

  • Wood N, Mason P (1991) The influence of static stability on the effective roughness lengths for momentum and heat transfer. Q J R Meteorol Soc 117:1025–1056

    Article  Google Scholar 

  • Wyngaard JC (1973) On surface-layer turbulence. In Haugen DA (Eds) Workshop on micrometeorology, American Meteorological Society. Boston, pp 101–149

  • Zieliński M, Fortuniak K, Pawlak W (2012) Turbulent sensible heat flux in Łódź obtained from scintillometer measurements—comparison of free and mix algorithms. Contempory Trends Geosci 1:109–117

    Google Scholar 

  • Zilitinkevich SS, Mammarella I, Baklanov AA, Joffre SM (2008) The effect of stratification on the aerodynamic roughness length and displacement height. Boundary-Layer Meteorol 129:179–190

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the following CEH staff: Alan Warwick and Cyril Barrett for design and construction of the scintillometer mountings, Geoff Wicks for assistance with the electronics and Dave McNeil for helping to build the rooftop weather station. This work would not have been possible without the generous co-operation of several people in Swindon who very kindly gave permission for equipment to be installed on their property. We also wish to thank the Science and Technology Facilities Council staff at Chilbolton Observatory for use of their test range for the scintillometer comparison. This work was funded by the Natural Environment Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, H.C., Evans, J.G. & Grimmond, C.S.B. Multi-Scale Sensible Heat Fluxes in the Suburban Environment from Large-Aperture Scintillometry and Eddy Covariance. Boundary-Layer Meteorol 152, 65–89 (2014). https://doi.org/10.1007/s10546-014-9916-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-014-9916-4

Keywords

Navigation