Skip to main content
Log in

Identifying and Characterizing Resting State Networks in Temporally Dynamic Functional Connectomes

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

An important application of resting state fMRI data has been to identify resting state networks (RSN). The conventional RSN studies attempted to discover consistent networks through functional connectivity analysis over the whole scan time, which implicitly assumes that RSNs are static. However, the brain undergoes dynamic functional state changes and the functional connectome patterns vary along with time, even in resting state. Hence, this study aims to characterize temporal brain dynamics in resting state. It utilizes the temporally dynamic functional connectome patterns to extract a set of resting state clusters and their corresponding RSNs based on the large-scale consistent, reproducible and predictable whole-brain reference system of dense individualized and common connectivity-based cortical landmarks (DICCCOL). Especially, an effective multi-view spectral clustering method was performed by treating each dynamic functional connectome pattern as one view, and this procedure was also applied on static multi-subject functional connectomes to obtain the static clusters for comparison. It turns out that some dynamic clusters exhibit high similarity with static clusters, suggesting the stability of those RSNs including the visual network and the default mode network. Moreover, two motor-related dynamic clusters show correspondence with one static cluster, which implies substantially more temporal variability of the motor resting network. Particularly, four dynamic clusters exhibited large differences in comparison with their corresponding static networks. Thus it is suggested that these four networks might play critically important roles in functional brain dynamics and interactions during resting state, offering novel insights into the brain function and its dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61(5):900–917

    PubMed  CAS  Google Scholar 

  • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676

    Article  PubMed  Google Scholar 

  • Assal M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, O’Boyle JG, Schultz RT, Pearlson GD (2010) Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53(1):247–256

    Article  Google Scholar 

  • Beckman CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013

    Article  Google Scholar 

  • Bickel S, Scheffer T (2004) Multi-view clustering. Proceeding of the IEEE international conference on data mining

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MR. Magn Reson Med 34(4):537–541

    Article  PubMed  CAS  Google Scholar 

  • Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Conference on learning theory

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Buzsáki G, Chen LS, Gage FH (1990) Spatial organization of physiological activity in the hippocampal region: relevance to memory formation. Prog Brain Res 83:257–268

    Article  PubMed  Google Scholar 

  • Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50:81–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri K, Kakade SM, Livescu K, Sridharan K (2009) Multi-view clustering via canonical correlation analysis. In: International conference on machine learning

  • Chen H, Li K, Zhu D, Jiang X, Yuan Y, Lv P, Zhang T, Guo L, Shen D, Liu T (2013) Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering. IEEE Trans on Med Imaging 32(9):1576–1586

    Article  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 21(9):1636–1644

    PubMed  CAS  Google Scholar 

  • Cordes D, Haughton VM, Carew JD, Arfanakis K, Maravilla K (2012) Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging 20(4):305–317

    Article  Google Scholar 

  • Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Nat Acad Sci USA 103(37):13848–13853

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Luca M, Smith S, De Stefano N, Matthews PM (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167(4):587–594

    Article  PubMed  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage 29(4):1359–1367

    Article  PubMed  Google Scholar 

  • Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE TIP 15(12):3736–3745

    Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13(1):5–14

    Article  PubMed  CAS  Google Scholar 

  • Gembris D, Taylor JG, Schor S, Frings W, Suter D, Posse S (2000) Functional magnetic resonance imaging in real time (FIRE): sliding-window correlation analysis and reference-vector optimization. Magn Reson Med 43:259–268

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54(9):677–696

    Article  PubMed  CAS  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Nati Acad Sci USA 100(1):253–258

    Article  CAS  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Nati Acad Sci USA 101(13):4637–4642

    Article  CAS  Google Scholar 

  • Hampson M, Olson IR, Leung HC, Skudlarski P, Gore JC (2004) Changes in functional connectivity of human MT/V5 with visual motion input. NeuroReport 15(8):1315–1319

    Article  PubMed  Google Scholar 

  • Jiang T, He Y, Zang Y, Weng X (2004) Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp 22(1):63–71

    Article  PubMed  Google Scholar 

  • Köhler S, Crane J, Milner B (2002) Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus 12(6):718–723

    Article  PubMed  Google Scholar 

  • Kumar A, Daumé H (2011) A co-training approach for multi-view spectral clustering. ICML-11

  • Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME (2009) Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci USA 106(11):4489–4494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li X, Zhu D, Jiang X, Jin C, Zhang X, Guo L, Zhang J, Hu X, Li L, Liu T (2013) Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Hum Brain Mapp. doi:10.1002/hbm.22290

  • Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7(2):119–132

    Article  PubMed  CAS  Google Scholar 

  • Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. Med Imaging IEEE Trans 16(2):187–198

    Article  CAS  Google Scholar 

  • Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE TIP 17(1):53–69

    Google Scholar 

  • Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration. ICCV

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090

    Article  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakoğlu Ü, Pearlson G, Kiehl K, Wang YM, Michael A, Calhoun V (2010) A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. Magn Reson Mater Phys Biol Med 23:351–366

    Article  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. Pattern Anal Mach Intel IEEE Trans 22(8):888–905

    Article  Google Scholar 

  • Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Van Essen DC, Feinberg DA, Yacoub ESM, Ugurbil K (2012) Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci USA 109:3131–3136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, Drzezga A, Förstl H, Kurz A, Zimmer C, Wohlschläger AM (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104(47):18760–18765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Squire LR, Schacter DL (2002) The neuropsychology of memory. Guilford Press, New York, USA

  • Starck J, Elad M, Donoho D (2005) Image decomposition via the combination of sparse representation and a variational approach. IEEE Trans Image Process 14(10):1570–1582

    Article  PubMed  Google Scholar 

  • Thirion B, Dodel S, Poline JB (2006) Detection of signal synchronizations in resting-state fMRI datasets. Neuroimage 29(1):321–327

    Article  PubMed  Google Scholar 

  • Van den Heuvel M, Mandl R, Hulshoff Pol H (2008) Normalized cut group clustering of resting-state fMRI data. PLos ONE 3(4):e2001

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  Google Scholar 

  • Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. PIEEE 98(6):1031–1044

    Google Scholar 

  • Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. CVPR

  • Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse representation. ICCV

  • Yuan Y, Jiang X, Zhu D, Chen H, Li K, Lv P, Yu X, Li X, Zhang S, Zhang T, Hu X, Han J, Guo L, Liu T (2013) Meta-analysis of functional roles of DICCCOLs. Neuroinformatics 11(1):47–63

  • Zhang Q, Li BX (2010) Discriminative K-SVD for dictionary learning in face recognition. CVPR

  • Zhang X, Guo L, Li X, Zhu D, Li K, Sun Z, Jin C, Hu X, Han J, Zhao Q, Li L, Liu T (2012) Characterization of task-free/task-performance Brain States. MICCAI, Nice, France

  • Zhang X, Guo L, Li X, Zhang T, Zhu D, Li K, Chen H, Lv J, Jin C, Zhao Q, Li L, Liu T (2013) Characterization of task-free and task-performance brain states via functional connectome patterns. Med Image Anal 17(8):1106–1122

    Article  PubMed  Google Scholar 

  • Zhu D, Li K, Faraco CC, Deng F, Zhang D, Jiang X, Chen H, Guo L, Miller LS, Liu T (2011) Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles. NeuroImage 59(2):1382–1393

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Li K, Guo L, Jiang X, Zhang T, Zhang D, Chen H, Deng F, Faraco C, Jin C, Wee CY, Yuan Y, Lv P, Yin Y, Hu X, Duan L, Hu X, Han J, Wang L, Shen D, Miler LS, Li L, Liu T (2012) DICCCOL: dense Individualized and common connectivity-based cortical landmarks. Cereb Cortex 23(4):786–800

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

T Liu was supported by the NIH R01 DA-033393, NIH R01 AG-042599, NSF CAREER Award IIS-1149260, and NSF BME-1302089. L Guo was supported by NSFC 61273362 and 61333017. X Zhang and J Lv were supported by the China Government Scholarship and the Doctorate Foundation of Northwestern Polytechnical University. X Hu was supported by the National Science Foundation of China under Grant 61103061, China Postdoctoral Science Foundation under Grant 20110490174 and 2012T50819. Lingjiang Li was supported by The National Natural Science Foundation of China (30830046) and The National 973 Program of China (2009 CB918303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingjiang Li or Tianming Liu.

Additional information

Xin Zhang, Xiang Li and Changfeng Jin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, X., Jin, C. et al. Identifying and Characterizing Resting State Networks in Temporally Dynamic Functional Connectomes. Brain Topogr 27, 747–765 (2014). https://doi.org/10.1007/s10548-014-0357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0357-7

Keywords

Navigation