Skip to main content

Advertisement

Log in

Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We aimed to investigate the association between gene co-expression modules and responses to neoadjuvant chemotherapy in breast cancer by using a systematic biological approach. The gene expression profiles and clinico-pathological data of 508 (discovery set) and 740 (validation set) patients with breast cancer who received neoadjuvant chemotherapy were analyzed. Weighted gene co-expression network analysis was performed and identified seven co-regulated gene modules. Each module and gene signature were evaluated with logistic regression models for pathological complete response (pCR). The association between modules and pCR in each intrinsic molecular subtype was also investigated. Two transcriptional modules were correlated with tumor grade, estrogen receptor status, progesterone receptor status, and chemotherapy response in breast cancer. One module that constitutes upregulated cell proliferation genes was associated with a high probability for pCR in the whole (odds ratio (OR) = 5.20 and 3.45 in the discovery and validation datasets, respectively), luminal B, and basal-like subtypes. The prognostic potentials of novel genes, such as MELK, and pCR-related genes, such as ESR1 and TOP2A, were identified. The upregulation of another gene co-expression module was associated with weak chemotherapy responses (OR = 0.19 and 0.33 in the discovery and validation datasets, respectively). The novel gene CA12 was identified as a potential prognostic indicator in this module. A systems biology network-based approach may facilitate the discovery of biomarkers for predicting chemotherapy responses in breast cancer and contribute in developing personalized medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

WGCNA:

Weighted gene co-expression network analysis

TOM:

Topological overlap measure

k.total:

Network connectivity

k.in:

Intramodular connectivity

ME:

Module eigengene

ER:

Estrogen receptor

PR:

Progesterone receptor

HER2:

Human epidermal growth factor 2

PCC:

Pearson’s correlation coefficient

CI:

Confidence interval

GS:

Gene significance

AUC:

Area under the receiver operating characteristic curve

OR:

Odds ratio

pCR:

Pathological complete response

RD:

Residual disease

GGI:

Gene expression grade index

GEO:

Gene expression omnibus

LN:

Lymph node

References

  1. von Minckwitz G et al (2012) Neoadjuvant treatments for triple-negative breast cancer (TNBC). Ann Oncol 23(6):35–39

    Google Scholar 

  2. Hatzis C et al (2011) A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 305(18):1873–1881

    Article  CAS  PubMed  Google Scholar 

  3. Tabchy A et al (2010) Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin Cancer Res 16(21):5351–5361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bonadonna G et al (1998) Primary chemotherapy in operable breast cancer: eight-year experience at the Milan Cancer Institute. J Clin Oncol 16(1):93–100

    CAS  PubMed  Google Scholar 

  5. Rastogi P et al (2008) Preoperative chemotherapy: updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27. J Clin Oncol 26(5):778–785

    Article  PubMed  Google Scholar 

  6. Symmans WF et al (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25(28):4414–4422

    Article  PubMed  Google Scholar 

  7. Rouzier R et al (2005) Nomograms to predict pathologic complete response and metastasis-free survival after preoperative chemotherapy for breast cancer. J Clin Oncol 23(33):8331–8339

    Article  PubMed  Google Scholar 

  8. Huober J et al (2010) Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast Cancer Res Treat 124(1):133–140

    Article  CAS  PubMed  Google Scholar 

  9. Silver DP et al (2010) Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28(7):1145–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tordai A et al (2008) Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res 10(2):29

    Article  Google Scholar 

  11. Witkiewicz AK et al (2014) Systematically defining single-gene determinants of response to neoadjuvant chemotherapy reveals specific biomarkers. Clin Cancer Res 20(18):4837–4848

    Article  CAS  PubMed  Google Scholar 

  12. Sotiriou C et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272

    Article  CAS  PubMed  Google Scholar 

  13. van’t Veer LJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  Google Scholar 

  14. Paik S et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  PubMed  Google Scholar 

  15. Liedtke C et al (2009) Genomic grade index is associated with response to chemotherapy in patients with breast cancer. J Clin Oncol 27(19):3185–3191

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gianni L et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23(29):7265–7277

    Article  CAS  PubMed  Google Scholar 

  17. Straver ME et al (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119(3):551–558

    Article  PubMed  Google Scholar 

  18. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  19. Sotiriou C et al (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800

    Article  CAS  PubMed  Google Scholar 

  20. Parker JS et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    Article  PubMed Central  PubMed  Google Scholar 

  21. Rouzier R et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685

    Article  CAS  PubMed  Google Scholar 

  22. Clarke C et al (2013) Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis. Carcinogenesis 34(10):2300–2308 Epub 2013/06/07

    Article  CAS  PubMed  Google Scholar 

  23. Wirapati P et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10(4):28

    Article  Google Scholar 

  24. Ivliev AE et al (2010) Coexpression network analysis identifies transcriptional modules related to proastrocytic differentiation and sprouty signaling in glioma. Cancer Res 70(24):10060–10070

    Article  CAS  PubMed  Google Scholar 

  25. Liu R et al (2015) Identification and validation of gene module associated with lung cancer through coexpression network analysis. Gene 563(1):56–62

    Article  CAS  PubMed  Google Scholar 

  26. Udyavar AR et al (2013) Co-expression network analysis identifies Spleen Tyrosine Kinase (SYK) as a candidate oncogenic driver in a subset of small-cell lung cancer. BMC Syst Biol 7(5):1752

    Google Scholar 

  27. Liu R et al (2015) Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen. Cancer Biol Ther 16(2):317–324

    PubMed  Google Scholar 

  28. Presson AP et al (2011) Protein expression based multimarker analysis of breast cancer samples. BMC Cancer 11(230):1471–2407

    Google Scholar 

  29. RCTR (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-projectorg/

  30. Iwamoto T et al (2011) Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J Natl Cancer Inst 103(3):264–272

    Article  CAS  PubMed  Google Scholar 

  31. Shi L et al (2010) The microarray quality control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 28(8):827–838

    Article  CAS  PubMed  Google Scholar 

  32. Desmedt C et al (2011) Multifactorial approach to predicting resistance to anthracyclines. J Clin Oncol 29(12):1578–1586

    Article  CAS  PubMed  Google Scholar 

  33. Johnson WE et al (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 8(1):118–127

    Article  PubMed  Google Scholar 

  34. Miller J et al (2011) Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinform 12(1):322

    Article  CAS  Google Scholar 

  35. Zhang B et al (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17

    Google Scholar 

  36. Langfelder P et al (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(559):1471–2105

    Google Scholar 

  37. Nakayama S et al (2009) Prediction of paclitaxel sensitivity by CDK1 and CDK2 activity in human breast cancer cells. Breast Cancer Res 11(1):24

    Article  Google Scholar 

  38. Torikoshi Y et al (2013) Novel functional assay for spindle-assembly checkpoint by cyclin-dependent kinase activity to predict taxane chemosensitivity in breast tumor patient. J Cancer 4(9):697–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kim SJ et al (2012) Recurrence risk score based on the specific activity of CDK1 and CDK2 predicts response to neoadjuvant paclitaxel followed by 5-fluorouracil, epirubicin and cyclophosphamide in breast cancers. Ann Oncol 23(4):891–897

    Article  CAS  PubMed  Google Scholar 

  40. Pritchard KI et al (2006) HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 354(20):2103–2111

    Article  CAS  PubMed  Google Scholar 

  41. Paik S et al (1998) erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst 90(18):1361–1370

    Article  CAS  PubMed  Google Scholar 

  42. Knoop AS et al (2005) retrospective analysis of topoisomerase IIa amplifications and deletions as predictive markers in primary breast cancer patients randomly assigned to cyclophosphamide, methotrexate, and fluorouracil or cyclophosphamide, epirubicin, and fluorouracil: Danish breast cancer cooperative group. J Clin Oncol 23(30):7483–7490

    Article  CAS  PubMed  Google Scholar 

  43. O’Malley FP et al (2009) Topoisomerase II alpha and responsiveness of breast cancer to adjuvant chemotherapy. J Natl Cancer Inst 101(9):644–650

    Article  PubMed Central  PubMed  Google Scholar 

  44. Warsow G et al (2013) Differential network analysis applied to preoperative breast cancer chemotherapy response. PLoS One 8(12):e81784

    Article  PubMed Central  PubMed  Google Scholar 

  45. Ross-Innes CS et al (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481(7381):389–393

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Xu C et al (2015) FOXA1 expression significantly predict response to chemotherapy in estrogen receptor-positive breast cancer patients. Ann Surg Oncol 22(6):2034–2039

    Article  PubMed  Google Scholar 

  47. Horimoto Y et al (2015) Low FOXA1 expression predicts good response to neo-adjuvant chemotherapy resulting in good outcomes for luminal HER2-negative breast cancer cases. Br J Cancer 112(2):345–351

    Article  CAS  PubMed  Google Scholar 

  48. Denkert C et al (2013) RNA-based determination of ESR1 and HER2 expression and response to neoadjuvant chemotherapy. Ann Oncol 24(3):632–639

    Article  CAS  PubMed  Google Scholar 

  49. Tominaga N et al (2012) Clinicopathological analysis of GATA3-positive breast cancers with special reference to response to neoadjuvant chemotherapy. Ann Oncol 23(12):3051–3057

    Article  CAS  PubMed  Google Scholar 

  50. Chen Y et al (2011) Estrogen receptor-related genes as an important panel of predictors for breast cancer response to neoadjuvant chemotherapy. Cancer Lett 302(1):63–68

    Article  CAS  PubMed  Google Scholar 

  51. Salmans ML et al (2013) The estrogen-regulated anterior gradient 2 (AGR2) protein in breast cancer: a potential drug target and biomarker. Breast Cancer Res 15(2):204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Rody A et al (2009) T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res 11(2):9

    Article  Google Scholar 

  53. Ignatiadis M et al (2012) Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis. J Clin Oncol 30(16):1996–2004

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors has any conflict of interest regarding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hao Zhou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Lv, QL., Yu, J. et al. Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer. Breast Cancer Res Treat 151, 607–618 (2015). https://doi.org/10.1007/s10549-015-3428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3428-x

Keywords

Navigation