Skip to main content

Advertisement

Log in

Effect of dynamic seeding methods on the distribution of fibroblasts within human acellular dermis

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The purpose of this investigation was to compare different dynamic cell seeding methods regarding their seeding efficiency, homogeneity, infiltration depth and proliferation within a human acellular dermis. In addition, the growth behaviour was observed during a 12-day static in vitro culture. The dynamic methods included orbital-shaker seeding and the use of a plate centrifuge with different rotational speeds, combinations of low-pressure for matrix degassing and centrifugal seeding. Scaffolds were incubated for up to 12 days statically. Cell distribution and infiltration depth were analysed histologically at days 0, 4, 8 and 12. Seeding efficiency and cell proliferation were quantified with the MTT-assay at the same time points. Centrifugal seeding with 300g for 5 × 1 min combined with matrix degassing significantly increased the seeding efficiency and homogeneity compared to the other methods. However, following static culture, no cells were detectable after 4 days in the inner matrix zones. Furthermore, none of the degassing+centrifugation groups reached a significantly higher proliferation at day 8 compared to the reference. The use of a single dynamic method resulted in an inefficient cell seeding. We archived the highest seeding efficiency, homogeneity and infiltration depth using a combination of degassing+centrifugation at 300g for 5 × 1 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almarza AJ, Athanasiou KA (2004) Seeding techniques and scaffolding choice for tissue engineering of the temporomandibular joint disk. Tissue Eng 10(11–12):1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20(2):109–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Beloti MM, Tambasco De Oliveira P, Perri De Carvalho PS, Rosa AL (2009) Seeding osteoblastic cells into a macroporous biodegradable CaP/PLGA scaffold by a centrifugal force. J Biomater Appl 23(6):481–495

    Article  CAS  PubMed  Google Scholar 

  • Brown BN, Barnes CA, Kasick RT, Michel R, Gilbert TW, Beer-Stolz D, Castner DG, Ratner BD, Badylak SF (2010) Surface characterization of extracellular matrix scaffolds. Biomaterials 31(3):428–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruckner P (2010) Suprastructures of extracellular matrices: paradigms of functions controlled by aggregates rather than molecules. Cell Tissue Res 339(1):7–18

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    Article  CAS  PubMed  Google Scholar 

  • Dar A, Shachar M, Leor J, Cohen S (2002) Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80(3):305–312

    Article  CAS  PubMed  Google Scholar 

  • Freed LE, Marquis JC, Langer R, Vunjak-Novakovic G, Emmanual J (1994) Composition of cell-polymer cartilage implants. Biotechnol Bioeng 43(7):605–614

    Article  CAS  PubMed  Google Scholar 

  • Godbey WT, Hindy SB, Sherman ME, Atala A (2004) A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials 25(14):2799–2805

    Article  CAS  PubMed  Google Scholar 

  • Green JA, Yamada KM (2007) Three-dimensional microenvironments modulate fibroblast signaling responses. Adv Drug Deliv Rev 59(13):1293–1298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffith CK, Miller C, Sainson RC, Calvert JW, Jeon NL, Hughes CC, George SC (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11(1–2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Hammond JS, Gilbert TW, Howard D, Zaitoun A, Michalopoulos G, Shakesheff KM, Beckingham IJ, Badylak SF (2011) Scaffolds containing growth factors and extracellular matrix induce hepatocyte proliferation and cell migration in normal and regenerating rat liver. J Hepatol 54(2):279–287

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Miwa M, Sakai Y, Niikura T, Lee SY, Oe K, Iwakura T, Kurosaka M, Komori T (2010) Efficient cell-seeding into scaffolds improves bone formation. J Dent Res 89(8):854–859

    Article  CAS  PubMed  Google Scholar 

  • Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36(1):17–28

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Rhee S, Ho CH, Grinnell F (2008) Distinguishing fibroblast promigratory and procontractile growth factor environments in 3-D collagen matrices. FASEB J 22(7):2151–2160

    Article  CAS  PubMed  Google Scholar 

  • Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60(2):184–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma T, Li Y, Yang ST, Kniss DA (1999) Tissue engineering human placenta trophoblast cells in 3-D fibrous matrix: spatial effects on cell proliferation and function. Biotechnol Prog 15(4):715–724

    Article  CAS  PubMed  Google Scholar 

  • Mizuno H, Takeda A, Uchinuma E (1999) Creation of an acellular dermal matrix from frozen skin. Aesthetic Plast Surg 23(5):316–322

    Article  CAS  PubMed  Google Scholar 

  • Ng R, Gurm JS, Yang ST (2010) Centrifugal seeding of mammalian cells in nonwoven fibrous matrices. Biotechnol Prog 26(1):239–245

    Article  CAS  PubMed  Google Scholar 

  • Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J (2011) Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 20(2):205–216

    Article  PubMed  Google Scholar 

  • Obradovic B, Carrier RL, Vunjak-Novakovic G, Freed LE (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng 63(2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Rossner E, Smith MD, Petschke B, Schmidt K, Vitacolonna M, Syring C, von Versen R, Hohenberger P (2011) Epiflex((R)) a new decellularised human skin tissue transplant: manufacture and properties. Cell Tissue Bank 12(3):209–217

    Article  CAS  PubMed  Google Scholar 

  • Schussler O, Chachques JC, Mesana TG, Suuronen EJ, Lecarpentier Y, Ruel M (2010) 3-dimensional structures to enhance cell therapy and engineer contractile tissue. Asian Cardiovasc Thorac Ann 18(2):188–198

    Article  PubMed  Google Scholar 

  • Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590

    Article  CAS  PubMed  Google Scholar 

  • Sukmana I (2012) Microvascular guidance: a challenge to support the development of vascularised tissue engineering construct. Sci World J 2012:201352

    Article  Google Scholar 

  • Tanzer ML (2006) Current concepts of extracellular matrix. J Orthop Sci 11(3):326–331

    Article  PubMed Central  PubMed  Google Scholar 

  • Thevenot P, Nair A, Dey J, Yang J, Tang L (2008) Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng Part C Methods 14(4):319–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180(3):487–502

    Article  CAS  PubMed  Google Scholar 

  • Torigoe I, Sotome S, Tsuchiya A, Yoshii T, Takahashi M, Kawabata S, Shinomiya K (2007) Novel cell seeding system into a porous scaffold using a modified low-pressure method to enhance cell seeding efficiency and bone formation. Cell Transplant 16(7):729–739

    Article  PubMed  Google Scholar 

  • Vereb G, Szollosi J, Matko J, Nagy P, Farkas T, Vigh L, Matyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer–Nicolson model. Proc Natl Acad Sci USA 100(14):8053–8058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vitacolonna M, Belharazem D, Hohenberger P, Roessner ED (2013) Effect of static seeding methods on the distribution of fibroblasts within human acellular dermis. Biomed Eng Online 12:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Vorotnikova E, McIntosh D, Dewilde A, Zhang J, Reing JE, Zhang L, Cordero K, Bedelbaeva K, Gourevitch D, Heber-Katz E, Badylak SF, Braunhut SJ (2010) Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol 29(8):690–700

    Article  CAS  PubMed  Google Scholar 

  • Yang TH, Miyoshi H, Ohshima N (2001a) Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. J Biomed Mater Res 55(3):379–386

    Article  CAS  PubMed  Google Scholar 

  • Yang TH, Miyoshi H, Ohshima N (2001b) Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. J Biomed Mater Res 55(3):379–386

    Article  CAS  PubMed  Google Scholar 

  • Yasuda K, Inoue S, Tabata Y (2004) Influence of culture method on the proliferation and osteogenic differentiation of human adipo-stromal cells in nonwoven fabrics. Tissue Eng 10(9–10):1587–1596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mark D. Smith and Dr. Jan C. Brune from the German Institute for Cell and Tissue Replacement (DIZG) for advice relating to use of Epiflex® and for assistance with data analysis and editing of the final manuscript. The authors also thank Dr. Lothar Pilz from the Medical Faculty Mannheim for his assistance with the statistical analyses.

Conflict of interest

Dr. Mario Vitacolonna, Dr. Djeda Belharazem, Prof. Dr. Peter Hohenberger and Dr. Eric Roessner declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Vitacolonna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitacolonna, M., Belharazem, D., Hohenberger, P. et al. Effect of dynamic seeding methods on the distribution of fibroblasts within human acellular dermis. Cell Tissue Bank 16, 605–614 (2015). https://doi.org/10.1007/s10561-015-9508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-015-9508-7

Keywords

Navigation