Skip to main content
Log in

Fabrication of platinum nanoparticles and nanowires by electron beam lithography (EBL) and nanoimprint lithography (NIL): comparison of ethylene hydrogenation kinetics

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Electron beam lithography (EBL), size reduction lithography (SRL), and nanoimprint lithography (NIL) have been utilized to produce platinum nanoparticles and nanowires in the 20–60-nm size range on oxide films (SiO2 and Al2O3) deposited onto silicon wafers. A combination of characterization techniques (SEM, AFM, XPS, AES) has been used to determine size, spatial arrangement and cleanliness of these fabricated catalysts. Ethylene hydrogenation reaction studies have been carried out over these fabricated catalysts and have revealed major differences in turnover rates and activation energies of the different nanostructures when clean and when poisoned with carbon monoxide. The oxide-metal interfaces are implicated as important reaction sites that remain active when the metal sites are poisoned by adsorbed carbon monoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Salmeron G.A. Somorjai (1981) J. Phys. Chem. 85 3835

    Google Scholar 

  2. M. Salmeron G.A. Somorjai (1982) J. Phys. Chem. 86 341

    Google Scholar 

  3. S.M. Davis G.A. Somorjai (1983) J. Phys. Chem. 87 1545

    Google Scholar 

  4. X. Su P.S. Cremer Y.R. Shen G.A. Somorjai (1997) J. Am. Chem. Soc. 119 3994

    Google Scholar 

  5. K.R. McCrea J.S. Parker G.A. Somorjai (2002) J. Phys. Chem. B 106 10854

    Google Scholar 

  6. J. Horiuti M. Polanyi (1934) Trans. Faraday Soc. 30 1164

    Google Scholar 

  7. F. Zaera G.A. Somorjai (1983) J. Catal. 84 375

    Google Scholar 

  8. F. Zaera G.A. Somorjai (1986) Langmuir 2 686

    Google Scholar 

  9. F. Zaera G.A. Somorjai (1985) J. Phys. Chem. 89 3211

    Google Scholar 

  10. D. Godbey F. Zaera R. Yeates G.A. Somorjai (1986) Surf. Sci. 167 150

    Google Scholar 

  11. A.L. Backman R.I. Masel (1988) J. Vac. Sci. Technol. 6 1137

    Google Scholar 

  12. A.L. Backman R.I. Masel (1991) J. Vac. Sci. Technol. 9 3

    Google Scholar 

  13. P. Cremer C. Stanners J.W. Niemantsverdriet Y.R. Shen G.A. Somorjai (1995) Surf. Sci. 328 111

    Google Scholar 

  14. T. Ohtani J. Kubota J.N. Kondo C. Hirose K. Domen (1999) J. Phys. Chem. B 103 4562

    Google Scholar 

  15. R. Deng E. Herceg M. Trenary (2004) Surf. Sci. 560 L195

    Google Scholar 

  16. D.C. Tang K.S. Hwang M. Salmeron G.A. Somorjai (2004) J. Phys. Chem. B 108 13300

    Google Scholar 

  17. A.S. Eppler J. Zhu E.A. Anderson G.A. Somorjai (2000) Top. Catal. 13 33

    Google Scholar 

  18. J. Zhu G.A. Somorjai (2001) Nano. Lett. 1 8

    Google Scholar 

  19. C.H. Ting K.L. Liauw (1983) J. Vac. Sci. Technol. B 1 1225

    Google Scholar 

  20. S.A. Rishton D.P. Kern (1987) J. Vac. Sci. Technol. B 5 135

    Google Scholar 

  21. M.T. Bohr (1996) Appl. Surf. Sci. 101 534

    Google Scholar 

  22. Y.K. Choi J. Zhu J. Grunes J. Bokor G.A. Somorjai (2003) J. Phys. Chem. B 107 3340

    Google Scholar 

  23. Y.K. Choi J.S. Lee J. Zhu G.A. Somorjai J. Bokor (2003) J. Vac. Sci. Tech. B 21 2951

    Google Scholar 

  24. S.Y. Chou P.R. Krauss P.J. Renstrom (1995) Appl. Phys. Lett. 67 3114

    Google Scholar 

  25. S.Y. Chou P.R. Krauss P.J. Renstrom (1996) Science 272 85

    Google Scholar 

  26. S.Y. Chou P.R. Krauss W. Zhang L.J. Guo L. Zhuang (1997) J. Vac. Sci. Technol. B 15 2897

    Google Scholar 

  27. L.F. Johnson K.A. Ingersoll G.W. Kammlott (1979) Appl. Phys. Lett. 34 578

    Google Scholar 

  28. C. Gourgon J.H. Tortai F. Lazzarino C. Perret G. Micouin O. Joubert S. Landis (2004) J. Vac. Sci. Technol. B 22 602

    Google Scholar 

  29. E. Segal R.J. Madon M.J. Boudart (1978) Catal. 52 45

    Google Scholar 

  30. J. Grunes J. Zhu E.A. Anderson G.A. Somorjai (2002) J. Phys. Chem. B 106 11463

    Google Scholar 

  31. F. Zaera G.A. Somorjai (1984) J. Am. Chem. Soc. 106 2288

    Google Scholar 

  32. K.S. Hwang M. Yang J. Zhu J. Grunes G.A. Somorjai (2003) J. Mol. Catal. A 204–205 499

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Ji Zhu of Lam Research Corporation, Dr E.A. Anderson of Lawrence Berkeley National Laboratory, Professor J. Bokor, and Professor Y.K. Choi both of UC Berkeley EECS Department, for all of their contributions to this work. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical and Materials Sciences Divisions, of the US Department of Energy under Contract No. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras, A.M., Grunes, J., Yan, X.M. et al. Fabrication of platinum nanoparticles and nanowires by electron beam lithography (EBL) and nanoimprint lithography (NIL): comparison of ethylene hydrogenation kinetics. Catal Lett 100, 115–124 (2005). https://doi.org/10.1007/s10562-004-3436-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-004-3436-7

KEY WORDS

Navigation