Skip to main content
Log in

Preparation and characterization of nanosized nickel oxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nanosized nickel oxide was synthesized by a simple liquid-phase process to obtain the hydroxide precursor and then calcined to form the oxide. The precursor and the nickel oxide were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis (TG) and temperature-programmed reduction (TPR). The results indicated that the particle size of nickel oxide was controlled by the calcined temperature (TC). Mixed phases of nickel oxide and nickel hydroxide were present as the TC was lower than 300 °C. Non-stoichiometric nickel oxide (NiO x , x = 1.2) was formed between 250 °C and 400 °C and a pure nickel oxide was formed as the TC arrived 500 °C. The particle size of nickel oxide changed as the calcined temperature was controlled under 250 °C, 300 °C, 400 °C and 500 °C, the order was 5.6 nm, 6.5 nm, 11 nm and 17 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Schmid (1992) Chem. Rev. 92 1709 Occurrence Handle10.1021/cr00016a002 Occurrence Handle1:CAS:528:DyaK38XmsVCntbg%3D

    Article  CAS  Google Scholar 

  2. P.V. Kamat (1993) Chem. Rev. 93 267 Occurrence Handle10.1021/cr00017a013 Occurrence Handle1:CAS:528:DyaK3sXmvFOnsA%3D%3D

    Article  CAS  Google Scholar 

  3. K.J. Kjabunde J. Stark O. Koper C. Mohs G.P. Dong S. Decker Y. Jiang I. Lagadic D. Zhang (1996) J. Phys. Chem. 100 12142 Occurrence Handle10.1021/jp960224x

    Article  Google Scholar 

  4. K.M. Dooley S.Y. Chen J.R.H. Ross (1994) J. Catal. 145 402 Occurrence Handle10.1006/jcat.1994.1050 Occurrence Handle1:CAS:528:DyaK2cXhs1Ohtrk%3D

    Article  CAS  Google Scholar 

  5. A. Alejandre F. Medina P. Salagre A. Fabregat J.E. Sueiras (1998) Appl. Catal. B 18 307 Occurrence Handle10.1016/S0926-3373(98)00050-2 Occurrence Handle1:CAS:528:DyaK1cXmslSqsb8%3D

    Article  CAS  Google Scholar 

  6. L. Soriano M. Abbate J. Vogel J.C. Fuggle (1993) Chem. Phys. Lett. 208 460 Occurrence Handle10.1016/0009-2614(93)87173-Z Occurrence Handle1:CAS:528:DyaK3sXkvVSmtr4%3D

    Article  CAS  Google Scholar 

  7. V. Biji M.A. Khadar (2001) Mater. Sci. Eng. A304–306 814

    Google Scholar 

  8. R.H. Kodama S.A. Makhlouf A.E. Berkowitz (1997) Phys. Rev. Lett. 79 1393 Occurrence Handle10.1103/PhysRevLett.79.1393 Occurrence Handle1:CAS:528:DyaK2sXlvVektLY%3D

    Article  CAS  Google Scholar 

  9. R.H. Kodama (1999) J. Magn. Magn. Mater. 200 359 Occurrence Handle10.1016/S0304-8853(99)00347-9 Occurrence Handle1:CAS:528:DyaK1MXmtVGlu7g%3D

    Article  CAS  Google Scholar 

  10. F Li H. Chen C. Wang K. Hu (2002) J. Electroanal. Chem. 531 53 Occurrence Handle10.1016/S0022-0728(02)01019-7 Occurrence Handle1:CAS:528:DC%2BD38XmslOjsrk%3D

    Article  CAS  Google Scholar 

  11. Y. Nuli S. Zhao Q. Qin (2003) J. Power Sources 114 113 Occurrence Handle10.1016/S0378-7753(02)00531-1 Occurrence Handle1:CAS:528:DC%2BD3sXhsFOkurY%3D

    Article  CAS  Google Scholar 

  12. R. Palombari (2003) J. Electroanal. Chem. 546 23 Occurrence Handle10.1016/S0022-0728(03)00134-7 Occurrence Handle1:CAS:528:DC%2BD3sXis1GjsLk%3D

    Article  CAS  Google Scholar 

  13. M. Matsumiya F. Qiu W. Shin N. Izu N. Murayama S. Kanzaki (2002) Thin Solid Films 419 213 Occurrence Handle10.1016/S0040-6090(02)00762-9 Occurrence Handle1:CAS:528:DC%2BD38XosVSktL8%3D

    Article  CAS  Google Scholar 

  14. M.I. Alymov O.N. Leontieva (1995) Nanostruct. Mater. 6 393 Occurrence Handle10.1016/0965-9773(95)00079-8 Occurrence Handle1:CAS:528:DyaK2MXmtleqt7o%3D

    Article  CAS  Google Scholar 

  15. P.L. Llewellyn V. Chevrot J. Ragai O. Cerelier J. Estienne F. Rouquerol (1997) Solid State Ionics 101–103 293

    Google Scholar 

  16. J.E. Rodriguez-Paez A.C. Caballero M. Villeggas C. Moure P. Duran J.F. Fernandez (2001) J. Eur. Ceramic Soc. 21 925 Occurrence Handle10.1016/S0955-2219(00)00283-1 Occurrence Handle1:CAS:528:DC%2BD3MXktVGlsL8%3D

    Article  CAS  Google Scholar 

  17. W.R. Bushing H.A. Levy (1957) J. Chem. Phys. 26 563 Occurrence Handle10.1063/1.1743345

    Article  Google Scholar 

  18. P. Baraldi G. Davolio (1989) Mater. Chem. Phys. 21 143 Occurrence Handle10.1016/0254-0584(89)90109-0 Occurrence Handle1:CAS:528:DyaL1MXhtVers70%3D

    Article  CAS  Google Scholar 

  19. H.P. Klug L.E. Alexander (1962) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley New York 491

    Google Scholar 

  20. J.T. Richardson B. Turk M.V. Twigg (1996) Appl. Catal. A148 97

    Google Scholar 

  21. J.T. Richardson M. Lei B. Turk K. Forster M.V. Twigg (1994) Appl. Catal. A110 217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CB., Gau, GY., Gau, SJ. et al. Preparation and characterization of nanosized nickel oxide. Catal Lett 101, 241–247 (2005). https://doi.org/10.1007/s10562-005-4899-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-4899-x

Key words

Navigation