Skip to main content
Log in

Catalyst deactivation and regeneration in low temperature ethanol steam reforming with Rh/CeO2–ZrO2 catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Rh/CeO2–ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 °C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 °C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.R. Rostrup-Nielsen, in: Catalysis, Science and Technology, Vol. 5, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1984) p. 1

  2. C. Cao G. Xia J. Holladay E. Jones Y. Wang (2004) Appl. Catal. A 262 19 Occurrence Handle1:CAS:528:DC%2BD2cXjt1aksLc%3D Occurrence Handle10.1016/j.apcata.2003.11.043

    Article  CAS  Google Scholar 

  3. C.S. Song (2002) Catal. Today 77 17 Occurrence Handle1:CAS:528:DC%2BD38Xoslyqur8%3D Occurrence Handle10.1016/S0920-5861(02)00231-6

    Article  CAS  Google Scholar 

  4. S. Velu K. Suzuki (2003) Topics Catal. 22 235 Occurrence Handle1:CAS:528:DC%2BD3sXjtlSktbs%3D Occurrence Handle10.1023/A:1023576020120

    Article  CAS  Google Scholar 

  5. G.W. Huber J.W. Shabaker J.A. Dumesic (2003) Science 300 2075 Occurrence Handle1:CAS:528:DC%2BD3sXkvVOrsLc%3D Occurrence Handle10.1126/science.1085597

    Article  CAS  Google Scholar 

  6. R.D. Cortright R.R. Davda J.A. Dumesic (2002) Nature 418 964 Occurrence Handle1:CAS:528:DC%2BD38XmsFWkt74%3D Occurrence Handle10.1038/nature01009

    Article  CAS  Google Scholar 

  7. G.A. Deluga J.R. Salge L.D. Schmidt X.E. Verykios (2004) Science 303 993 Occurrence Handle1:CAS:528:DC%2BD2cXhtlWmsrw%3D Occurrence Handle10.1126/science.1093045

    Article  CAS  Google Scholar 

  8. J. Kugai S. Velu C. Song (2005) Catal. Lett. 101 255 Occurrence Handle1:CAS:528:DC%2BD2MXks1elu7s%3D Occurrence Handle10.1007/s10562-005-4901-7

    Article  CAS  Google Scholar 

  9. J. Llorca P.R. Piscina Particlede la J.A. Dalmon J. Sales N. Homs (2003) Appl.Catal. B 43 355 Occurrence Handle1:CAS:528:DC%2BD3sXkvF2hu7Y%3D Occurrence Handle10.1016/S0926-3373(02)00326-0

    Article  CAS  Google Scholar 

  10. S. Velu N. Satoh C.S. Gopinath K. Suzuki (2002) Catal. Lett. 82 145 Occurrence Handle1:CAS:528:DC%2BD38Xns1Cmtbs%3D Occurrence Handle10.1023/A:1020516830768

    Article  CAS  Google Scholar 

  11. D.K. Liguras D.I. Kondarides X.E. Verykios (2003) Appl. Catal. B 43 345 Occurrence Handle1:CAS:528:DC%2BD3sXkvF2hu7k%3D Occurrence Handle10.1016/S0926-3373(02)00327-2

    Article  CAS  Google Scholar 

  12. J.P. Breen R. Burch H.M. Coleman (2002) Appl. Catal. B 39 65 Occurrence Handle1:CAS:528:DC%2BD38Xms1ygu7k%3D Occurrence Handle10.1016/S0926-3373(02)00075-9

    Article  CAS  Google Scholar 

  13. A.N. Fatsikostas D.I. Kondarides X.E. Verykios (2002) Catal. Today 75 145 Occurrence Handle1:CAS:528:DC%2BD38XksFKqurY%3D Occurrence Handle10.1016/S0920-5861(02)00057-3

    Article  CAS  Google Scholar 

  14. D. Srinivas C.V.V. Satyanarayana H.S. Potdar P. Ratnasamy (2003) Appl. Catal. A 246 323 Occurrence Handle1:CAS:528:DC%2BD3sXkvVSntLg%3D Occurrence Handle10.1016/S0926-860X(03)00085-1

    Article  CAS  Google Scholar 

  15. A. Haryanto S. Fernando N. Murali S. Adhikari (2005) Energy Fuels 19 2098 Occurrence Handle1:CAS:528:DC%2BD2MXmslemt7Y%3D Occurrence Handle10.1021/ef0500538

    Article  CAS  Google Scholar 

  16. A.N. Fatsikostas X.E. Verykios (2004) J. Catal. 225 439 Occurrence Handle1:CAS:528:DC%2BD2cXltVCrtbo%3D Occurrence Handle10.1016/j.jcat.2004.04.034

    Article  CAS  Google Scholar 

  17. F. Haga T. Nakajima H. Miya S. Mishima (1997) Catal. Lett. 48 223 Occurrence Handle1:CAS:528:DyaK1cXkvV2qsQ%3D%3D Occurrence Handle10.1023/A:1019039407126

    Article  CAS  Google Scholar 

  18. K. Vasudeva N. Mitra P. Umasankar S.C. Dhingra (1996) Int. J. Hyrogen Energy 21 13 Occurrence Handle1:CAS:528:DyaK2MXps1yntb0%3D Occurrence Handle10.1016/0360-3199(95)00030-H

    Article  CAS  Google Scholar 

  19. I. Fishtik A. Alexander R. Datta D. Geana (2000) Int. J. Hyrogen Energy 25 31 Occurrence Handle1:CAS:528:DyaK1MXotVGlurs%3D Occurrence Handle10.1016/S0360-3199(99)00004-X

    Article  CAS  Google Scholar 

  20. S. Freni G. Maggio S. Cavallaro (1996) J. Power Sources 62 67 Occurrence Handle1:CAS:528:DyaK28XntlOnu74%3D Occurrence Handle10.1016/S0378-7753(96)02403-2

    Article  CAS  Google Scholar 

  21. P. Tsiakaras A. Demin (2001) J. Power Sources 102 210 Occurrence Handle1:CAS:528:DC%2BD38XjvFOl Occurrence Handle10.1016/S0378-7753(01)00803-5

    Article  CAS  Google Scholar 

  22. D.A. Morgenstern J.P. Fornango (2005) Energy Fuels 19 1708 Occurrence Handle1:CAS:528:DC%2BD2MXlsV2rsbk%3D Occurrence Handle10.1021/ef049692t

    Article  CAS  Google Scholar 

  23. W. Wang Z. Wang Y. Ding J. Xi G. Lu (2002) Catal. Lett. 81 63 Occurrence Handle1:CAS:528:DC%2BD38XkvFaqt7k%3D Occurrence Handle10.1023/A:1016008006076

    Article  CAS  Google Scholar 

  24. C. Diagne H. Idriss A. Kiennemann (2002) Catal. Commun. 3 565 Occurrence Handle1:CAS:528:DC%2BD38XoslyksLs%3D Occurrence Handle10.1016/S1566-7367(02)00226-1

    Article  CAS  Google Scholar 

  25. C. Diagne, H. Idriss, K. Pearson, M.A. Gomez-Garcia, A. Kiennemann, C. R. Chimie. 7 (2004) 617

    Google Scholar 

  26. H.-S. Roh Y. Wang D.L. King A. Platon Y.-H. Chin (2006) Catal. Lett. 108 15 Occurrence Handle1:CAS:528:DC%2BD28XivVGqu7Y%3D Occurrence Handle10.1007/s10562-006-0021-2

    Article  CAS  Google Scholar 

  27. H.S. Potdar H.-S. Roh K.-W. Jun M. Ji Z.-W. Liu (2002) Catal. Lett. 84 95 Occurrence Handle1:CAS:528:DC%2BD38Xos1Wgu7s%3D Occurrence Handle10.1023/A:1021036920308

    Article  CAS  Google Scholar 

  28. H.-S. Roh H.S. Potdar K.-W. Jun J.-W. Kim Y.-S. Oh (2004) Appl. Catal. A 276 231 Occurrence Handle1:CAS:528:DC%2BD2cXovVyqtbY%3D Occurrence Handle10.1016/j.apcata.2004.08.009

    Article  CAS  Google Scholar 

  29. D.R. Palo J.D. Holladay R.T. Rozmiarek C.E. Guzman-Leong Y. Wang J. Hu Y.-H. Chin R.A. Dagle E.G. Baker (2002) J. Power Sources 108 28 Occurrence Handle1:CAS:528:DC%2BD38Xjslaqt74%3D Occurrence Handle10.1016/S0378-7753(01)01010-2

    Article  CAS  Google Scholar 

  30. C. Dall’Agnol A. Gervasini F. Morazzoni F. Pinna G. Strukul L. Zanderighi (1985) J. Catal. 96 106 Occurrence Handle1:CAS:528:DyaL2MXlvVCnsbc%3D Occurrence Handle10.1016/0021-9517(85)90364-1

    Article  CAS  Google Scholar 

  31. W.K. Jozwiak (1986) React. Kinet. Catal. Lett. 30 345 Occurrence Handle1:CAS:528:DyaL28XlvFOktrc%3D Occurrence Handle10.1007/BF02064312

    Article  CAS  Google Scholar 

  32. A. Trovarelli (1996) Catal. Rev.-Sci. Eng. 38 439 Occurrence Handle1:CAS:528:DyaK28XmsVCmsr8%3D

    CAS  Google Scholar 

  33. J. Kaspar P. Fornasiero M. Graziani (1999) Catal. Today 50 285 Occurrence Handle1:CAS:528:DyaK1MXitVKgu7s%3D Occurrence Handle10.1016/S0920-5861(98)00510-0

    Article  CAS  Google Scholar 

  34. S. Rossignol F. Gerard D. Duprez (1999) J. Mater. Chem. 9 1615 Occurrence Handle1:CAS:528:DyaK1MXjvFCguro%3D Occurrence Handle10.1039/a900536f

    Article  CAS  Google Scholar 

  35. M. Thammachart V. Meeyoo T. Risksomboon S. Osuwan (2001) Catal. Today 68 53 Occurrence Handle1:CAS:528:DC%2BD3MXlslCisLw%3D Occurrence Handle10.1016/S0920-5861(01)00322-4

    Article  CAS  Google Scholar 

  36. H.-S. Roh K.-W. Jun W.-S. Dong S.-E. Park Y.-S. Baek (2001) Catal. Lett. 74 31 Occurrence Handle1:CAS:528:DC%2BD3MXmsFKqsbg%3D Occurrence Handle10.1023/A:1016699317421

    Article  CAS  Google Scholar 

  37. H.-S. Roh K.-W. Jun W.-S. Dong J.-S. Chang S.-E. Park Y.-I. Joe (2002) J. Mol. Catal. A 181 137 Occurrence Handle1:CAS:528:DC%2BD38XhvFOms7w%3D Occurrence Handle10.1016/S1381-1169(01)00358-2

    Article  CAS  Google Scholar 

  38. H.-S. Roh H.S. Potdar K.-W. Jun (2004) Catal. Today 93–95 39 Occurrence Handle10.1016/j.cattod.2004.05.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh, HS., Platon, A., Wang, Y. et al. Catalyst deactivation and regeneration in low temperature ethanol steam reforming with Rh/CeO2–ZrO2 catalysts. Catal Lett 110, 1–6 (2006). https://doi.org/10.1007/s10562-006-0082-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0082-2

Keywords

Navigation